1887

Abstract

The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.

Funding
This study was supported by the:
  • Max-Planck-Gesellschaft (Award IMPRS EvolBio)
    • Principle Award Recipient: RahulUnni
  • Bundesministerium für Bildung und Forschung (Award 01KI2020)
    • Principle Award Recipient: DanielUnterweger
  • Deutsche Forschungsgemeinschaft (Award CRC1182 B4)
    • Principle Award Recipient: DanielUnterweger
  • Deutsche Forschungsgemeinschaft (Award Manuscript_Revision.docx)
    • Principle Award Recipient: AndreasDiepold
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001151
2022-04-25
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001151.html?itemId=/content/journal/micro/10.1099/mic.0.001151&mimeType=html&fmt=ahah

References

  1. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006; 103:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  2. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25–37 [View Article] [PubMed]
    [Google Scholar]
  3. Trunk K, Peltier J, Liu Y-C, Dill BD, Walker L et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920–931 [View Article] [PubMed]
    [Google Scholar]
  4. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 2007; 104:15508–15513 [View Article] [PubMed]
    [Google Scholar]
  5. Wang T, Si M, Song Y, Zhu W, Gao F et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog 2015; 11:e1005020 [View Article] [PubMed]
    [Google Scholar]
  6. LaCourse KD, Peterson SB, Kulasekara HD, Radey MC, Kim J et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol 2018; 3:440–446 [View Article]
    [Google Scholar]
  7. Mariano G, Trunk K, Williams DJ, Monlezun L, Strahl H et al. A family of Type VI secretion system effector proteins that form ion-selective pores. Nat Commun 2019; 10:1–15 [View Article]
    [Google Scholar]
  8. Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033 [View Article]
    [Google Scholar]
  9. Ma AT, Mekalanos JJ. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A 2010; 107:4365–4370 [View Article] [PubMed]
    [Google Scholar]
  10. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 2009; 10:104 [View Article] [PubMed]
    [Google Scholar]
  11. Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 2014; 16:227–236 [View Article] [PubMed]
    [Google Scholar]
  12. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080 [View Article] [PubMed]
    [Google Scholar]
  13. Böck D, Medeiros JM, Tsao H-F, Penz T, Weiss GL et al. In situ architecture, function, and evolution of a contractile injection system. Science 2017; 357:713–717 [View Article] [PubMed]
    [Google Scholar]
  14. Geller AM, Zlotkin D, Levy A. Large-scale discovery of candidate type VI secretion effectors 1 with antibacterial activity. bioRxiv 2021; 2:3
    [Google Scholar]
  15. Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 2014; 9:e110726 [View Article] [PubMed]
    [Google Scholar]
  16. Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L et al. A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci U S A 2021; 118:e2008500118 [View Article] [PubMed]
    [Google Scholar]
  17. Bruto M, James A, Petton B, Labreuche Y, Chenivesse S et al. Vibrio crassostreae, a benign oyster colonizer turned into a pathogen after plasmid acquisition. ISME J 2017; 11:1043–1052 [View Article] [PubMed]
    [Google Scholar]
  18. Coyne MJ, Zitomersky NL, McGuire AM, Earl AM, Comstock LE. Evidence of extensive DNA transfer between bacteroidales species within the human gut. mBio 2014; 5:e01305–14 [View Article] [PubMed]
    [Google Scholar]
  19. Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC et al. Host adaptation predisposes Pseudomonas aeruginosa to Type VI secretion system-mediated predation by the Burkholderia cepacia complex. Cell Host Microbe 2020; 28:534–547 [View Article] [PubMed]
    [Google Scholar]
  20. Kempnich MW, Sison-Mangus MP. Presence and abundance of bacteria with the Type VI secretion system in a coastal environment and in the global oceans. PLoS One 2020; 15:e0244217 [View Article] [PubMed]
    [Google Scholar]
  21. Kostiuk B, Santoriello FJ, Diaz-Satizabal L, Bisaro F, Lee K-J et al. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat Commun 2021; 12:6457 [View Article]
    [Google Scholar]
  22. Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 2020; 10:12514 [View Article]
    [Google Scholar]
  23. Borenstein DB, Ringel P, Basler M, Wingreen NS. Established microbial colonies can survive Type VI secretion assault. PLoS Comput Biol 2015; 11:10 [View Article]
    [Google Scholar]
  24. Wong M, Liang X, Smart M, Tang L, Moore R et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol 2016; 82:6881–6888 [View Article] [PubMed]
    [Google Scholar]
  25. McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun 2017; 8:14371 [View Article] [PubMed]
    [Google Scholar]
  26. Smith WPJ, Brodmann M, Unterweger D, Davit Y, Comstock LE et al. The evolution of tit-for-tat in bacteria via the type VI secretion system. Nat Commun 2020; 11:5395 [View Article] [PubMed]
    [Google Scholar]
  27. Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 2020; 18:e3000720 [View Article] [PubMed]
    [Google Scholar]
  28. Griffin AS, West SA, Buckling A. Cooperation and competition in pathogenic bacteria. Nature 2004; 430:1024–1027 [View Article] [PubMed]
    [Google Scholar]
  29. Mitri S, Foster KR. The genotypic view of social interactions in microbial communities. Annu Rev Genet 2013; 47:247–273 [View Article] [PubMed]
    [Google Scholar]
  30. Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol 2019; 29:R521–R537 [View Article] [PubMed]
    [Google Scholar]
  31. Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol 2016; 24:833–845 [View Article] [PubMed]
    [Google Scholar]
  32. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014; 12:137–148 [View Article] [PubMed]
    [Google Scholar]
  33. Jurėnas D, Journet L. Activity, delivery, and diversity of Type VI secretion effectors. Mol Microbiol 2021; 115:383–394 [View Article] [PubMed]
    [Google Scholar]
  34. Monjarás Feria J, Valvano MA. An Overview of Anti-Eukaryotic T6SS Effectors. Front Cell Infect Microbiol 2020; 10:584751 [View Article] [PubMed]
    [Google Scholar]
  35. Ruhe ZC, Low DA, Hayes CS. Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annu Rev Microbiol 2020; 74:497–520 [View Article] [PubMed]
    [Google Scholar]
  36. Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ. Type VI secretion system effector proteins: Effective weapons for bacterial competitiveness. Cell Microbiol 2020; 22:e13241 [View Article]
    [Google Scholar]
  37. Crisan CV, Hammer BK. The Vibrio cholerae type VI secretion system: toxins, regulators and consequences. Environ Microbiol 2020; 22:4112–4122 [View Article]
    [Google Scholar]
  38. Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013; 62:663–676 [View Article] [PubMed]
    [Google Scholar]
  39. LeRoux M, Kirkpatrick RL, Montauti EI, Tran BQ, Peterson SB et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. elife 2015; 4: [View Article]
    [Google Scholar]
  40. Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2016; 30:1–7 [View Article]
    [Google Scholar]
  41. Chen L, Zou Y, She P, Wu Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 2015; 172:19–25 [View Article]
    [Google Scholar]
  42. Gonzalez D, Mavridou DAI. Making the best of aggression: the many dimensions of bacterial toxin regulation. Trends Microbiol 2019; 27:897–905 [View Article]
    [Google Scholar]
  43. Bayer-Santos E, Ceseti L de M, Farah CS, Alvarez-Martinez CE. Distribution, function and regulation of Type 6 secretion systems of Xanthomonadales. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  44. Peñil-Celis A, Garcillán-Barcia MP. Crosstalk between Type VI secretion system and mobile genetic elements. Front Mol Biosci 2019; 6:126 [View Article]
    [Google Scholar]
  45. Guillemette R, Ushijima B, Jalan M, Häse CC, Azam F. Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus. PLoS One 2020; 15:e0227864 [View Article]
    [Google Scholar]
  46. Tang L, Yue S, Li G-Y, Li J, Wang X-R et al. Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum. Arch Microbiol 2016; 198:751–760 [View Article] [PubMed]
    [Google Scholar]
  47. Salomon D, Klimko JA, Trudgian DC, Kinch LN, Grishin NV et al. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog 2015; 11:e1005128 [View Article] [PubMed]
    [Google Scholar]
  48. Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 2017; 11:972–987 [View Article] [PubMed]
    [Google Scholar]
  49. Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D. Physiological heterogeneity triggers sibling conflict mediated by the Type VI secretion system in an aggregative multicellular bacterium. mBio 2018; 9:e01645-17 [View Article] [PubMed]
    [Google Scholar]
  50. Records AR. The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 2011; 24:751–757 [View Article] [PubMed]
    [Google Scholar]
  51. Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH et al. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. Front Plant Sci 2021; 12:1493 [View Article] [PubMed]
    [Google Scholar]
  52. Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 2003; 16:53–64 [View Article] [PubMed]
    [Google Scholar]
  53. Vacheron J, Péchy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M et al. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J 2019; 13:1318–1329 [View Article] [PubMed]
    [Google Scholar]
  54. Chen W-J, Kuo T-Y, Hsieh F-C, Chen P-Y, Wang C-S et al. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016; 6:1–14 [View Article] [PubMed]
    [Google Scholar]
  55. Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci U S A 2018; 115:E8528–E8537 [View Article] [PubMed]
    [Google Scholar]
  56. Steele MI, Kwong WK, Whiteley M, Moran NA. Diversification of Type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 2017; 8:e01630-17 [View Article]
    [Google Scholar]
  57. Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL et al. The landscape of Type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 2017; 22:411–419 [View Article] [PubMed]
    [Google Scholar]
  58. Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J Bacteriol 2019; 201:19 [View Article]
    [Google Scholar]
  59. Wexler AG, Bao Y, Whitney JC, Bobay L-M, Xavier JB et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc Natl Acad Sci U S A 2016; 113:3639–3644 [View Article]
    [Google Scholar]
  60. García-Bayona L, Coyne MJ, Comstock LE. Mobile Type VI secretion system loci of the gut Bacteroidales display extensive intra-ecosystem transfer, multi-species spread and geographical clustering. PLoS Genet 2021; 17:e1009541 [View Article]
    [Google Scholar]
  61. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006; 312:1526–1530 [View Article] [PubMed]
    [Google Scholar]
  62. Lloyd AL, Henderson TA, Vigil PD, Mobley HLT. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 2009; 191:3469–3481 [View Article] [PubMed]
    [Google Scholar]
  63. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 2008; 197:1079–1081 [View Article] [PubMed]
    [Google Scholar]
  64. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2014; 9:1071–1081 [View Article] [PubMed]
    [Google Scholar]
  65. Storey D, McNally A, Åstrand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 2020; 16:e1007969 [View Article] [PubMed]
    [Google Scholar]
  66. Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol 2019; 10: [View Article] [PubMed]
    [Google Scholar]
  67. Carruthers MD, Nicholson PA, Tracy EN, Munson RS. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 2013; 8:e59388 [View Article] [PubMed]
    [Google Scholar]
  68. Lewis JM, Deveson Lucas D, Harper M, Boyce JD. Systematic Identification and Analysis of Acinetobacter baumannii Type VI Secretion System Effector and Immunity Components. Front Microbiol 2019; 10:CT [View Article] [PubMed]
    [Google Scholar]
  69. Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2015; 112:9442–9447 [View Article] [PubMed]
    [Google Scholar]
  70. Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc Natl Acad Sci U S A 2019; 116:1378–1383 [View Article] [PubMed]
    [Google Scholar]
  71. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [View Article] [PubMed]
    [Google Scholar]
  72. Sana TG, Hachani A, Bucior I, Soscia C, Garvis S et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 2012; 287:27095–27105 [View Article] [PubMed]
    [Google Scholar]
  73. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article] [PubMed]
    [Google Scholar]
  74. Han Y, Wang T, Chen G, Pu Q, Liu Q et al. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog 2019; 15:12 [View Article] [PubMed]
    [Google Scholar]
  75. Annavajhala MK, Gomez-Simmonds A, Uhlemann AC. Multidrug-Resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front Microbiol 2019; 10:JAN [View Article] [PubMed]
    [Google Scholar]
  76. Fata F, Chittivelu S, Tessler S, Kupfer Y. Gas gangrene of the arm due to Enterobacter cloacae in a neutropenic patient. South Med J 1996; 89:1095–1096 [View Article] [PubMed]
    [Google Scholar]
  77. Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA et al. Two Type VI secretion systems of Enterobacter cloacae are required for bacterial competition, cell adherence, and intestinal colonization. Front Microbiol 2020; 11:560488 [View Article]
    [Google Scholar]
  78. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2018; 20:1–15 [View Article] [PubMed]
    [Google Scholar]
  79. Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008; 11:3–8 [View Article] [PubMed]
    [Google Scholar]
  80. Piel D, Bruto M, James A, Labreuche Y, Lambert C et al. Selection of Vibrio crassostreae relies on a plasmid expressing a type 6 secretion system cytotoxic for host immune cells. Environ Microbiol 2020; 22:4198–4211 [View Article] [PubMed]
    [Google Scholar]
  81. Schwarz S, West TE, Boyer F, Chiang W-C, Carl MA et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 2010; 6:e1001068 [View Article] [PubMed]
    [Google Scholar]
  82. de Bruin OM, Ludu JS, Nano FE. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 2007; 7:1–10 [View Article] [PubMed]
    [Google Scholar]
  83. Nano FE, Schmerk C. The Francisella pathogenicity island. Ann N Y Acad Sci 2007; 1105:122–137 [View Article] [PubMed]
    [Google Scholar]
  84. Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KKM et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 2004; 186:6430–6436 [View Article] [PubMed]
    [Google Scholar]
  85. Hare RF, Hueffer K. Francisella novicida pathogenicity island encoded proteins were secreted during infection of macrophage-like cells. PLoS One 2014; 9:e105773 [View Article] [PubMed]
    [Google Scholar]
  86. Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:MAR [View Article] [PubMed]
    [Google Scholar]
  87. Bröms JE, Sjöstedt A, Lavander M. The role of the Francisella tularensis pathogenicity island in type vi secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol 2010; 1:DEC [View Article] [PubMed]
    [Google Scholar]
  88. Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 2009; 10:354 [View Article] [PubMed]
    [Google Scholar]
  89. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C et al. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog 2011; 7:e1002191 [View Article] [PubMed]
    [Google Scholar]
  90. Wang X, Zhu S, Zhao J-H, Bao H-X, Liu H et al. Genetic boundaries delineate the potential human pathogen Salmonella bongori into discrete lineages: divergence and speciation. BMC Genomics 2019; 20:930 [View Article] [PubMed]
    [Google Scholar]
  91. Ma J, Sun M, Bao Y, Pan Z, Zhang W et al. Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol 2013; 20:454–464 [View Article] [PubMed]
    [Google Scholar]
  92. Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 2014; 5:3549 [View Article] [PubMed]
    [Google Scholar]
  93. Wang M, Cao H, Wang Q, Xu T, Guo X et al. The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868. Front Microbiol 2018; 9:CT [View Article] [PubMed]
    [Google Scholar]
  94. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V et al. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol 2011; 77:3255–3267 [View Article] [PubMed]
    [Google Scholar]
  95. Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G et al. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili. elife 2021; 10:e63755 [View Article] [PubMed]
    [Google Scholar]
  96. Shyntum DY, Venter SN, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014; 15:163 [View Article]
    [Google Scholar]
  97. Sánchez-Cañizares C, Jorrín B, Durán D, Nadendla S, Albareda M et al. Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum. Genes (Basel) 2018; 9:E60 [View Article]
    [Google Scholar]
  98. Coyne MJ, Roelofs KG, Comstock LE. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 2016; 17:58 [View Article]
    [Google Scholar]
  99. Basler M. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 2015; 370:1679 [View Article]
    [Google Scholar]
  100. Schlumberger MC, Müller AJ, Ehrbar K, Winnen B, Duss I et al. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci U S A 2005; 102:12548–12553 [View Article]
    [Google Scholar]
  101. Kupferberg LL, Higuchi K. Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis. J Bacteriol 1958; 76:120–121 [View Article] [PubMed]
    [Google Scholar]
  102. Carter PB, Zahorchak RJ, Brubaker RR. Plague virulence antigens from Yersinia enterocolitica. Infect Immun 1980; 28:638–640 [View Article] [PubMed]
    [Google Scholar]
  103. Sasakawa C, Kamata K, Sakai T, Murayama SY, Makino S et al. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect Immun 1986; 51:470–475 [View Article] [PubMed]
    [Google Scholar]
  104. Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog 2011; 7:e1002143 [View Article] [PubMed]
    [Google Scholar]
  105. Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 2009; 28:315–325 [View Article] [PubMed]
    [Google Scholar]
  106. Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A et al. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 2014; 8:20–30 [View Article]
    [Google Scholar]
  107. Pietrosiuk A, Lenherr ED, Falk S, Bönemann G, Kopp J et al. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 2011; 286:30010–30021 [View Article]
    [Google Scholar]
  108. Vettiger A, Basler M. Type VI secretion system substrates are transferred and reused among sister cells. Cell 2016; 167:99–110 [View Article]
    [Google Scholar]
  109. Unterweger D, Kitaoka M, Miyata ST, Bachmann V, Brooks TM et al. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 2012; 7:10 [View Article]
    [Google Scholar]
  110. Gerc AJ, Diepold A, Trunk K, Porter M, Rickman C et al. Visualization of the serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep 2015; 12:2131–2142 [View Article]
    [Google Scholar]
  111. Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552–563 [View Article] [PubMed]
    [Google Scholar]
  112. Avello M, Davis KP, Grossman AD. Identification, characterization and benefits of an exclusion system in an integrative and conjugative element of Bacillus subtilis. Mol Microbiol 2019; 112:1066–1082 [View Article] [PubMed]
    [Google Scholar]
  113. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 2016; 12:e1005735 [View Article] [PubMed]
    [Google Scholar]
  114. Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:7707–7712 [View Article] [PubMed]
    [Google Scholar]
  115. Puhar A, Sansonetti PJ. Type III secretion system. Curr Biol 2014; 24:R784–91 [View Article] [PubMed]
    [Google Scholar]
  116. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015; 347:63–67 [View Article]
    [Google Scholar]
  117. Matthey N. Neighbor predation linked to natural competence fosters the transfer of large genomic regions in Vibrio cholerae. elife 2019; 8: [View Article]
    [Google Scholar]
  118. Thomas J, Watve SS, Ratcliff WC, Hammer BK. Horizontal gene transfer of functional type VI killing genes by natural transformation. mBio 2017; 8:e00654-17 [View Article]
    [Google Scholar]
  119. Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE et al. Human gut bacteria contain acquired interbacterial defence systems. Nature 2019; 575:224–228 [View Article]
    [Google Scholar]
  120. Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DAI et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A 2018; 115:12519–12524 [View Article]
    [Google Scholar]
  121. Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y. Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133 [View Article]
    [Google Scholar]
  122. Majerczyk C, Schneider E, Greenberg EP. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants. elife 2016; 5:e14712 [View Article]
    [Google Scholar]
  123. Toska J, Ho BT, Mekalanos JJ. Exopolysaccharide protects Vibrio cholerae from exogenous attacks by the type 6 secretion system. Proc Natl Acad Sci U S A 2018; 115:7997–8002 [View Article]
    [Google Scholar]
  124. Hersch SJ, Watanabe N, Stietz MS, Manera K, Kamal F et al. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat Microbiol 2020; 5:706–714 [View Article]
    [Google Scholar]
  125. Wong M, Liang X, Smart M, Tang L, Moore R et al. Microbial herd protection mediated by antagonistic interaction in polymicrobial communities. Appl Environ Microbiol 2016; 82:6881–6888 [View Article]
    [Google Scholar]
  126. Borenstein DB, Ringel P, Basler M, Wingreen NS. Established microbial colonies can survive type VI secretion assault. PLoS Comput Biol 2015; 11:10 [View Article] [PubMed]
    [Google Scholar]
  127. Yang X, Long M, Shen X. Immunity pairs provide the T6SS nanomachine its offensive and defensive capabilities. Molecules 2018; 23:E1009 [View Article] [PubMed]
    [Google Scholar]
  128. LeRoux M, Peterson SB, Mougous JD. Bacterial danger sensing. J Mol Biol 2015; 427:3744–3753 [View Article] [PubMed]
    [Google Scholar]
  129. Chen L, Zou Y, She P, Wu Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 2015; 172:19–25 [View Article] [PubMed]
    [Google Scholar]
  130. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 2009; 106:4154–4159 [View Article] [PubMed]
    [Google Scholar]
  131. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012; 483:182–186 [View Article] [PubMed]
    [Google Scholar]
  132. Kudryashev M, Wang RY-R, Brackmann M, Scherer S, Maier T et al. Structure of the type VI secretion system contractile sheath. Cell 2015; 160:952–962 [View Article] [PubMed]
    [Google Scholar]
  133. Basler M, Mekalanos JJ. Type 6 secretion dynamics within and between bacterial cells. Science 2012; 337:815 [View Article]
    [Google Scholar]
  134. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. PLoS Genet 2015; 11:10 [View Article]
    [Google Scholar]
  135. Durand E, Nguyen VS, Zoued A, Logger L, Péhau-Arnaudet G et al. Biogenesis and structure of a type VI secretion membrane core complex. Nature 2015; 523:555–560 [View Article] [PubMed]
    [Google Scholar]
  136. Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 2014; 15:9–21 [View Article] [PubMed]
    [Google Scholar]
  137. Santin YG, Doan T, Lebrun R, Espinosa L, Journet L et al. In vivo TssA proximity labelling during type VI secretion biogenesis reveals TagA as a protein that stops and holds the sheath. Nat Microbiol 2018; 3:1304–1313 [View Article] [PubMed]
    [Google Scholar]
  138. Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B et al. Priming and polymerization of a bacterial contractile tail structure. Nature 2016; 531:59–63 [View Article] [PubMed]
    [Google Scholar]
  139. Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008; 11:3–8 [View Article] [PubMed]
    [Google Scholar]
  140. Trunk K, Peltier J, Liu Y-C, Dill BD, Walker L et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920–931 [View Article] [PubMed]
    [Google Scholar]
  141. Le NH, Pinedo V, Lopez J, Cava F, Feldman MF. Killing of gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proc Natl Acad Sci U S A 2021; 118:40 [View Article] [PubMed]
    [Google Scholar]
  142. Schwarz S, Singh P, Robertson JD, LeRoux M, Skerrett SJ et al. VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 2014; 82:1445–1452 [View Article] [PubMed]
    [Google Scholar]
  143. Nguyen VS, Douzi B, Durand E, Roussel A, Cascales E et al. Towards a complete structural deciphering of Type VI secretion system. Curr Opin Struct Biol 2018; 49:77–84 [View Article] [PubMed]
    [Google Scholar]
  144. Chang Y-W, Rettberg LA, Ortega DR, Jensen GJ. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 2017; 18:1090–1099 [View Article] [PubMed]
    [Google Scholar]
  145. Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and activity of the type VI secretion system. Microbiol Spectr 2019; 7: [View Article] [PubMed]
    [Google Scholar]
  146. Quentin D, Ahmad S, Shanthamoorthy P, Mougous JD, Whitney JC et al. Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 2018; 3:1142–1152 [View Article]
    [Google Scholar]
  147. Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA et al. Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO J 2020; 39:11 [View Article]
    [Google Scholar]
  148. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080 [View Article]
    [Google Scholar]
  149. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. A new view of the tree of life. Nat Microbiol 2016; 1:16048 [View Article]
    [Google Scholar]
  150. Haubold B, Klötzl F, Pfaffelhuber P. andi: fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics 2015; 31:1169–1175 [View Article] [PubMed]
    [Google Scholar]
  151. Darch SE, McNally A, Harrison F, Corander J, Barr HL et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 2015; 5:7649 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001151
Loading
/content/journal/micro/10.1099/mic.0.001151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error