• Open Access

Tuning the genie pion production model with MINERvA data

P. Stowell et al. (MINERvA Collaboration)
Phys. Rev. D 100, 072005 – Published 14 October 2019

Abstract

Faced with unresolved tensions between neutrino interaction measurements at few-GeV neutrino energies, current experiments are forced to accept large systematic uncertainties to cover discrepancies between their data and model predictions. The widely used pion production model in genie is compared to four MINERνA charged current pion production measurements using nuisance. Tunings, i.e., adjustments of model parameters, to help match genie to MINERνA and older bubble chamber data are presented. We find that scattering off nuclear targets as measured in MINERνA is not in good agreement with expectations based upon scattering off nucleon (hydrogen or deuterium) targets in existing bubble chamber data. An additional ad hoc correction for the lowQ2 region, where collective nuclear effects are expected to be large, is presented. While these tunings and corrections improve the agreement of genie with the data, the modeling is imperfect. The development of these tunings within the nuisance framework allows for straightforward extensions to other neutrino event generators and models, and allows omitting and including new datasets as they become available.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 12 March 2019

DOI:https://doi.org/10.1103/PhysRevD.100.072005

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 100, Iss. 7 — 1 October 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×