Skip to main content
Log in

N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Here we present data on nitrogen and argon isotopic compositions and He–Ar–N–C(CO2) elemental ratios obtained during stepwise crushing of fresh basaltic glasses of the N-MORB family from Mid-Atlantic ridge rift valley at 16°07′–17°11′ N. The bulk nitrogen isotopic composition in the samples varies from δ15N(total) = –5.2 ± 0.2‰ (i.e., typical for MORB glasses) to δ15N(total) = +4.6 ± 0.3‰ (pointing to the presence of organic nitrogen). The δ15N variations in the crushing steps are wider and range from –13.8 to +8.3‰. The 40Ar/36Ar ratios in the crushing steps vary from the value close to that in the atmosphere (~296) up to 11 100 ± 590 (the bulk values cover a range from 355 ± 11 to 2799 ± 159). Correlations between argon and nitrogen isotopic and elemental ratios imply mixing between an N-MORB type mantle component and a surface-derived component enriched in 15N. Carbon (CO2)—nitrogen systematic suggests that the most plausible source for isotopically heavy nitrogen is the organic matter brought into the fluid source. Strong relationships between Ar and N isotopic compositions and Cl, H2O, and K, as well as Ar–N2, N2–CO2 and Ar–He–CO2 systematics, indicate that melt degassing and contamination with atmospheric Аr and organic nitrogen are the two dominant processes responsible for elemental and isotopic variation. The contamination of magmatic melts with surface related noble gases and organic nitrogen occurred through their interaction with high salinity hydrothermal brines. We propose that this contamination mechanism may be universal and largely responsible for the observed variations in the isotopic composition for a number of volatile elements in MORB glasses. However larger set of samples from the hydrothermal fields’ related areas has to be studied for better understanding how common is the established contamination mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. Alletti, D. R. Baker, B. Scaillet, A. Aiuppa, R. Moretti, and L. Ottolini, “Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at Mount Etna,” Chem. Geol. 263, 37–50 (2009).

    Article  Google Scholar 

  2. C. J. Ballentine and D. N. Barfod, “The origin of air-like noble gases in MORB and OIB,” Earth Planet. Sci. Lett. 180 (1), 39–48 (2000).

    Article  Google Scholar 

  3. H. Bougault, L. Dmitriev, J. G. Schilling, A. Sobolev, J. L. Joron, and H. D. Needham, “Mantle heterogeneity from trace elements, MAR triple junction near 14° N,” Earth Planet. Sci. Lett. 88 (1), 27–36 (1988).

    Article  Google Scholar 

  4. A. I. Buikin, A. B. Verchovsky, V. A. Grinenko, S. A. Silantyev, V. S. Sevastyanov, Yu A. Nevinny, and E. P. Smirnova, “C, N, He, and Ar isotope and element ratios in fluid inclusions from MORB chilled glasses, Stepwise crushing data,” Geochem. Int. 51 (4), 338–343 (2013).

    Article  Google Scholar 

  5. A. I. Buikin, N. A. Migdisova, J. Hopp, E. V. Korochantseva, and M. Trieloff, “He, Ne, Ar stepwise crushing data on basalt glasses from different segments of Bouvet Triple Junction. Geochem. Int. 55 (11), 977–987 (2017).

    Article  Google Scholar 

  6. A. I. Buikin, A. B. Verchovsky, and N. A. Migdisova, “N–C–Ar–He isotopic systematics of quenched tholeiitic glasses from the Bouvet Triple Junction area,” Geochem. Int. 56 (13), 1368–1383 (2018).

    Article  Google Scholar 

  7. A. I. Buikin, O. V. Kuznetsova, T. A. Velivetskaya, V. S. Sevastyanov, and A. V. Ignatiev, “An isotope ratio mass spectrometry-based method for hydrogen isotopic analysis in sub-microliter volumes of water, Application for multi-isotope investigations of gases extracted from fluid inclusions,” Rapid Comm. Mass Spectrom. 34 (22) (2020).

  8. M. Cannat and J. F. Casey, “An ultramafic lift at the Mid-Atlantic Ridge, Successive stages of magmatism in serpentinized peridotites from the 15 N Region,” In, Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites, Ed. by R. L. M. Vissers (Kluwer Academic Publishers, 1995), pp. 5–34.

    Google Scholar 

  9. P. Cartigny and B. Marty, “Nitrogen Isotopes and Mantle Geodynamics, The Emergence of Life and the Atmosphere-Crust-Mantle Connection,” Elements 9 (5), 359–366 (2013).

    Article  Google Scholar 

  10. P. Cartigny, N. Jendrzejewski, F. Pineau, E. Petit, and M. Javoy, “Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing, the case of the Southwest Indian Ridge,” Earth Planet. Sci. Lett. 194, 241–257 (2001).

    Article  Google Scholar 

  11. D. Chavrit, R. Burgess, H. Sumino, D. A. H. Teagle, G. Droop, A. Shimizu, and C. J. Ballentine, “The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles,” Geochim. Cosmochim. Acta 183, 106–124 (2016).

    Article  Google Scholar 

  12. N. Dauphas and B. Marty, “Heavy nitrogen in carbonatites of the Kola Peninsula”: A possible signature of the deep mantle,” Science 286 (5449), 2488 (1999).

    Article  Google Scholar 

  13. L. Dosso, B. B. Hanan, H. Bougault, J. -G. Schilling, and J. -L. Joron, “Sr-Nd-Pb geochemical morphology between 10° and 17°N on the Mid-Atlantic Ridge: a new MORB isotope signature,” Earth Planet. Sci. Lett. 106 (1), 29–43 (1991).

    Article  Google Scholar 

  14. T. P. Fischer, P. Burnard, B. Marty, D. R. Hilton, E. Füri, F. Palhol, Z. D. Sharp, and F. Mangasini, “Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites,” Nature 459 (7243), 77–80 (2009).

    Article  Google Scholar 

  15. D. Harrison, P. Burnard, and G. Turner, “Noble gas behaviour and composition in the mantle, constraints from the Iceland Plume,” Earth Planet. Sci. Lett. 171 (2), 199–207 (1999).

    Article  Google Scholar 

  16. A. W. Hofmann, “Mantle geochemistry: The message from oceanic volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  17. G. Holland and C. J. Ballentine, “Seawater subduction controls the heavy noble gas composition of the mantle,” Nature 441(7090), 186–191 (2006).

    Article  Google Scholar 

  18. A. Jambon, H. Weber, and O. Braun, “Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C. Geochemical implications,” Geochim. Cosmochim. Acta 50 (3), 401– 408 (1986).

    Article  Google Scholar 

  19. M. A. Kendrick, M. Scambelluri, M. Honda, and D. Phillips, “High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction,” Nature Geosci. 4 (11), 807–812 (2011).

    Article  Google Scholar 

  20. M. A. Kendrick, R. Arculus, P. Burnard, and M. Honda, “Quantifying brine assimilation by submarine magmas: Examples from the Galápagos Spreading Centre and Lau Basin,” Geochim. Cosmochim. Acta 123, 150–165 (2013).

    Article  Google Scholar 

  21. M. A. Kendrick, C. Hémond, V. S. Kamenetsky, L. Danyushevsky, C. W. Devey, T. Rodemann, M. G. Jackson, and M. R. Perfit, “Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere,” Nature Geosci. 10 (3), 222–228 (2017).

    Article  Google Scholar 

  22. M. A. Kendrick, M. Scambelluri, J. Hermann, and J. A. Padr’on–Navarta, “Halogens and noble gases in serpentinites and secondary peridotites: Implications for seawater subduction and the origin of mantle neon,” Geochim. Cosmochim. Acta 235, 285–304 (2018).

    Article  Google Scholar 

  23. A. J. R. Kent, M. D. Norman, I. D. Hutcheon, and E. M. Stolper, “Assimilation of seawater- derived components in an oceanic volcano, evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii,” Chem. Geol. 156 (1–4), 299–319 (1999).

    Article  Google Scholar 

  24. E. M. Klein and C. H. Langmuir, “Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness,” J. Geophys. Res. 92 (B8), 8089 (1987).

    Article  Google Scholar 

  25. H. Kumagai and I. Kaneoka, “Relationship between submarine MORB glass textures and atmospheric component of MORBs,” Chem. Geol. 200 (1), 1–24 (2003).

    Article  Google Scholar 

  26. A. Mallik, Y. Li, and M. Wiedenbeck, “Nitrogen evolution within the Earth’s atmosphere– mantle system assessed by recycling in subduction zones,” Earth Planet. Sci. Lett. 482, 556–566 (2018).

    Article  Google Scholar 

  27. B. Marty and F. Humbert, “Nitrogen and argon isotopes in oceanic basalts,” Earth Planet. Sci. Lett. 152,101–112 (1997).

    Article  Google Scholar 

  28. B. Marty and L. Zimmermann, “Volatiles (H, C, N, Ar) in Mid-Ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition,” Geochim. Cosmochim. Acta. 63, 3619–3633 (1999).

    Article  Google Scholar 

  29. B. Marty, S. Zashu, and M. Ozima, “Two noble gas components in a Mid-Atlantic Ridge basalt,” Nature, 302 (5905), 238–240 (1983).

    Article  Google Scholar 

  30. S. M. McLennan, S. R. Taylor, M. T. McCulloch, and J. B. Maynard, “Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54(7), 2015–2050 (1990).

    Article  Google Scholar 

  31. P. Michael and J. -G. Schilling, “Chlorine in mid-ocean ridge magmas, Evidence for assimilation of seawater-influenced components,” Geochim. Cosmochim. Acta 53, 3131–3143 (1989).

    Article  Google Scholar 

  32. R. K. Mohapatra and S. V.S. Murty, “Origin of air-like noble gases in oceanic basalts,” Geophys. Res. Lett. 27 (11), 1583–1586 (2000).

    Article  Google Scholar 

  33. S. Mukhopadhyay, “Early differentiation and volatile accretion recorded in deep–mantle neon and xenon,” Nature 486 (7401), 101–104 (2012).

    Article  Google Scholar 

  34. M. Ozima and F. A. Podosek, Noble Gas Geochemistry (Cambridge University Press, 2002).

    Google Scholar 

  35. R. Parai, S. Mukhopadhyay, J. M. Tucker, and M. K. Pet˝o, “The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source,” Lithos 346, 105153 (2019).

    Article  Google Scholar 

  36. D. B. Patterson, M. Honda, and I. Mcdougall, “Atmospheric Contamination - a Possible Source for Heavy Noble-Gases in Basalts from Loihi Seamount, Hawaii,” Geophys. Res. Lett. 17 (6), 705–708 (1990).

    Article  Google Scholar 

  37. K. E. Peters, R. E. Sweeney, and L. R. Kaplan, “Correlation of carbon and nitrogen stabel isotope ratios in sedimentary organic matter,” Limnol. Oceanogr. 23, 598–604 (1978).

    Article  Google Scholar 

  38. F. Pineau and M. Javoy, “Carbon isotopes and concentrations in mid-oceanic ridge basalts,” Earth Planet. Sci. Lett. 62 (2), 239–257 (1983).

    Article  Google Scholar 

  39. D. L. Pinti and K. Hashizume, “15N-depleted nitrogen in Early Archean kerogens, clues on ancient marine chemosyntetic-based ecosystems? A comment to V. Beaumont and F. Robert, Precambrian Res. 96, 62–82,” Precambrian Res. 105, 85–88 (2001).

    Article  Google Scholar 

  40. D. C. Presnall and J. D. Hoover, 1987. “High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts,” In: Magmatic processes: Physicochemical Principles, Ed. by B. O.Mysen, Geochem. Soc. Spec. Publ., No. 1, 75–89 (1987)

  41. P. Sarda, M. Moreira, and T. Staudacher, “Argon-lead isotopic correlation in Mid-Atlantic Ridge basalts,” Science, 283 (5402), 666–668 (1999).

    Article  Google Scholar 

  42. H. Shinohara, “A missing link between volcanic degassing and experimental studies on chloride partitioning,” Chem. Geol. 263 (1), 51–59 (2009).

    Article  Google Scholar 

  43. Shipboard Scientific Party, “Leg 209 Preliminary Report,” (2003).

  44. Shipboard Scientific Party, “SERPENTINE. Scientific Cruise Report (Iferemer, Centre de Brest) (2007).

    Google Scholar 

  45. S. A. Silantyev, L. V. Danyushevsky, A. A. Plechova, L. Dosso, B. A. Bazylev, and V. E. Bel’tenev, “Geochemical and isotopic signatures of magmatic products in the MAR rift valley at 12°49′– 17°23′ N and 29°59′–33°41′ N: evidence of Two contrasting sources of the parental melts,” Petrology 16 (1), 36–62 (2008).

    Article  Google Scholar 

  46. J. Stelling, R. E. Botcharnikov, O. Beermann, and M. Nowak, “Solubility of H2O- and chlorine-bearing fluids in basaltic melt of Mount Etna at T = 1050–1250°C and P = 200 MPa,” 256 (3-4), 102–110 (2008).

  47. N. A. Stroncik and S. Niedermann, “Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation,” Geochim. Cosmochim. Acta 172, 306–321 (2016).

    Article  Google Scholar 

  48. H. Sumino, R. Burgess, T. Mizukami, S. R. Wallis, G. Holland, and C. J. Ballentine, “Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite,” Earth Planet. Sci. Lett. 294 (1), 163–172 (2010).

    Article  Google Scholar 

  49. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders & M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  50. I. N. Tolstikhin, J. D. Kramers, and A. W. Hofmann, “A chemical Earth model with whole mantle convection, The importance of a core–mantle boundary layer (D″) and its early formation,” Chem. Geol. 226 (3–4), 79–99 (2006).

    Article  Google Scholar 

  51. M. Trieloff, M. Falter, and E. K. Jessberger, “The distribution of mantle and atmospheric argon in oceanic basalt glasses,” Geochim. Cosmochim. Acta 67 (6), 1237–1253 (2003).

    Article  Google Scholar 

  52. A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger, “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199 (3), 243–255 (2002).

    Article  Google Scholar 

  53. A. B. Verchovsky, “Origin of isotopically light nitrogen in meteorites,” Geochem. Int. 55 (11), 957–970 (2017).

    Article  Google Scholar 

  54. A. B. Verchovsky, N. A. Goltsin, E. M. Prasolov, and K. I. Lokhov, “Nitrogen isotopic composition of shungite from the Onega Structure, Russia, and the origin of the organic matter,” Geochem. Int. 56 (13), 1341–1353 (2018).

    Article  Google Scholar 

  55. M. Wilson, Igneous Petrogenesis (Unwin Hyman, London, 1989).

    Book  Google Scholar 

  56. F. Witham, J. Blundy, S. C. Kohn, P. Lesne, J. Dixon, S. V. Churakov, and R. Botcharnikov, “SolEx, a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt,” Comp. Geosci. 45, 87–97 (2012).

    Article  Google Scholar 

  57. A. Y. Yang, C. H. Langmuir, Y. Cai, P. Michael, S. L. Goldstein, and Z. Chen, “A subduction influence on ocean ridge basalts outside the Pacific subduction shield,” Nature Commun. 12 (1), 4757 (2021).

    Article  Google Scholar 

  58. A. Zindler and S. R. Hart, “Chemical geodynamics,” Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge reviewers O. Lukanin and M. Gannibal for constructive reviews that improved the manuscript.

Funding

The work was partially supported by Russian Science Foundation grant no. 22-27-00815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Buikin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buikin, A.I., Silantyev, S.A. & Verchovsky, A.B. N–Ar–He–CO2 Systematics Combined with H2O, Cl, K Abundances in MORB Glasses Demonstrate Interaction of Magmatic and Hydrothermal Systems: a Case for MAR at 16°07′–17°11′ N. Geochem. Int. 60, 1068–1086 (2022). https://doi.org/10.1134/S0016702922110027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922110027

Keywords:

Navigation