Skip to main content
Log in

He–Ne–Ar–N2–CO2 Systematics of Fernando de Noronha Mantle Xenoliths: Confirmation of Mantle Plume Origin

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Fernando de Noronha archipelago (southwest Atlantic, 345 km from the coast of Brazil) is considered as the result of mantle plume activity. However, data on the isotopic composition of helium and neon, which are, perhaps, the only unambiguous geochemical criterion for deep mantle plumes have not been published yet for the region. In this paper, we present the first data on the isotopic composition of helium, neon, argon, and nitrogen, obtained by stepwise crushing of mantle xenoliths from the basanites of the San José Formation. The results obtained may indicate that fluid inclusions contain the very first portions of the exsolved gases—they are ultra-depleted in helium in relation to neon and especially argon. This conclusion is also supported by He–Ar–CO2 systematics. The isotopic composition of helium (4He/3He = 31 879 ± 6796) and neon (21Ne/22Ne(mantle) = 0.0453 ± 0.0012) indicates that it was indeed a mantle plume, identical in noble gas composition to the Kerguelen plume. According to the Ar–Ne isotope systematics 40Ar/36Ar (mantle) = 7455 ± 2290. Nitrogen is characterized by a heavy isotopic composition (δ15N = +5.4 ± 0.2‰), which corresponds to the hypothesis of the subduction nature of nitrogen in deep mantle plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. F. F. M. Almeida, Geology and Petrology of Archipelago Fernando de Noronha (Division of Geol. and Mineral, Department of National Mineral Production, Ministry of Agriculture, Rio de Janeiro, 1958) [in Portuguese].

  2. F. F. M. Almeida, “Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica,” Terræ Didatica 2 (1), 3–18 (2006)

    Article  Google Scholar 

  3. Z. Ben-Avraham, C. J.H. Hartnady, and J. A. Malan, “Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia microplate,” Earth Planet. Sci. Lett. 117, 43–58 (1993).

    Article  Google Scholar 

  4. A. I. Buikin, M. Trieloff, J. Hopp, T. Althaus, E. V. Korochantseva, and W. H. Schwarz, and R. Altherr, “Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe,” Earth Planet. Sci. Lett. 230, 143–162 (2005).

    Article  Google Scholar 

  5. A. I. Buikin, M. Trieloff, E. V. Korochantseva, J. Hopp, M. Kaliwoda, and R. Altherr, “Distribution of mantle and atmospheric argon in mantle xenoliths from the western Arabian Peninsula: constraints on timing and composition of metasomatizing agents in the lithospheric mantle,” J. Petrol. 51, 2547–2570 (2010).

    Article  Google Scholar 

  6. A. I. Buikin, A. B. Verchovsky, V. A. Grinenko, S. A. Silantyev, V. S. Sevastyanov, Yu A. Nevinny, and E. P. Smirnova, “C, N, He, and Ar isotope and element ratios in fluid inclusions from MORB chilled glasses: stepwise crushing data,” Geochem. Int. 51 (4), 338–343 (2013).

    Article  Google Scholar 

  7. A. I. Buikin, N. A. Migdisova, J. Hopp, E. V. Korochantseva, and M. Trieloff, “He, Ne, Ar stepwise crushing data on basalt glasses from different segments of Bouvet Triple Junction,” Geochem. Int. 55 (11), 977–987 (2017).

    Article  Google Scholar 

  8. A. I. Buikin, A. I. Kamaleeva, and N. V. Sorokhtina, “On the separation efficiency of entrapped and in situ formed noble gas components at sample crushing in vacuum,” Geochem. Int. 56 (6), 601–607 (2018a).

    Article  Google Scholar 

  9. A. I. Buikin, A. B. Verchovsky, and N. A. Migdisova, “N–C–Ar–He isotopic systematics of quenched tholeiitic glasses from the Bouvet triple junction area,” Geochem. Int. 56 (13), 1368–1383 (2018b).

    Article  Google Scholar 

  10. A. I. Buikin, S.A. Silantyev, and A.B. Verchovsky, “N–Ar–He–CO2 systematics combined with H2O, Cl, K abundances in MORB glasses demonstrate interaction of magmatic and hydrothermal systems, a case for MAR at 16°07′–17°11′ N,” Geochem Int. 60 (11), 1068–1086 (2022). https://doi.org/10.1134/S0016702922110027

    Article  Google Scholar 

  11. P. Cartigny, N. Jendrzejewski, F. Pineau, E. Petit, and M. Javoy, “Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge,” Earth Planet. Sci. Lett. 194, 241–257 (2001).

    Article  Google Scholar 

  12. V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  13. J. M. D. Day, T. D. Jones, and R. W. Nicklas, “Mantle sources of ocean islands basalts revealed from noble gas isotope systematics,” Chem. Geol. 587, 120626 (2022).

    Article  Google Scholar 

  14. M. Ernesto, L. S. Marques, E. M. Piccirillo, E. C. Molina, N. Ussami, P. Comin-Chiaramonti, and G. Bellieni, “Paraná magmatic province – Tristan da Cunha plume system, fixed versus mobile plume, petrogenetic considerations and alternative heat sources,” J. Volcanol. Geotherm. Res. 118, 15–36 (2002).

    Article  Google Scholar 

  15. T. P. Fischer, N. Takahata, Yu. Sano, H. Sumino, and D. Hilton, “Nitrogen isotopes of the mantle, Insights from mineral separates,” Geophys. Res. Lett. 32, L11305 (2005). https://doi.org/10.1029/2005GL022792

    Article  Google Scholar 

  16. T. P. Fischer, P. Burnard, B. Marty, D. R. Hilton, E. Füri, F. Palhol, Z. D. Sharp, and F. Mangasini, “Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites,” Nature, 459 (7243), 77–80 (2009).

    Article  Google Scholar 

  17. G. R. Foulger, “Origin of the South Atlantic igneous province,” J. Volcanol. Geotherm. Res. 355, 2–20 (2018).

    Article  Google Scholar 

  18. G. Holland and C. J. Ballentine, “Seawater subduction controls the heavy noble gas composition of the mantle,” Nature 441 (7090), 186–191 (2006).

    Article  Google Scholar 

  19. M. Honda, I. McDougall, D. B. Patterson, A. Doulgeris, and D. A. Clague, “Possible solar noble-gas component in Hawaiian basalts,” Nature 349, 149–151 (1991).

    Article  Google Scholar 

  20. J. Hopp, M. Trieloff, and R. Altherr, “Neon isotopes in mantle rocks from the Red Sea region reveal large-scale plume–lithosphere interaction,” Earth Planet. Sci. Lett. 219, 61–76 (2004).

    Article  Google Scholar 

  21. J. Hopp, M. Trieloff, A. I. Buikin, E. V. Korochantseva, W. H. Schwarz, T. Althaus, and R. Altherr, “Heterogeneous mantle argon isotope composition in the subcontinental lithospheric mantle beneath the Red Sea region,” Chem. Geol. 240, 36–53 (2007).

    Article  Google Scholar 

  22. A. Jambon, H. Weber, and O. Braun, “Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C: geochemical implications,” Geochim. Cosmochim. Acta 50 (3), 401–408 (1986).

    Article  Google Scholar 

  23. M. A. Kendrick, M. Scambelluri, M. Honda, and D. Phillips, “High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction,” Nature Geosci. 4 (11), 807–812 (2011).

    Article  Google Scholar 

  24. M. A. Kendrick, R. Arculus, P. Burnard, and M. Honda, “Quantifying brine assimilation by submarine magmas, Examples from the Galápagos Spreading Centre and Lau Basin,” Geochim. Cosmochim. Acta 123, 150–165 (2013).

    Article  Google Scholar 

  25. L. N. Kogarko, G. Kurat, and T. Ntaflos, “Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brasil,” Contrib. Mineral. Petrol. 140, 577–587 (2001).

    Article  Google Scholar 

  26. E. V. Korochantseva, A. I. Buikin, J. Hopp, A. B. Verchovsky, A. V. Korochantsev, M. Anand, and M. Trieloff, “The lunar Dhofar 1436 meteorite, 40Ar–39Ar chronology and volatiles, revealed by stepwise combustion and crushing methods,” Meteorit. Planet. Sci. 56 (3), 455–481 (2021).

    Article  Google Scholar 

  27. J.-Y. Lee, K. Marti, J. P. Severinghaus, et al., “A redetermination of the isotopic abundances of atmospheric Ar,” Geochim. Cosmochim. Acta 70, 4507–4512 (2006).

    Article  Google Scholar 

  28. R. P. Lopes and M. N. C. Ulbrich, “Geochemistry of the alkaline volcanic-subvolcanic rocks of the Fernando de Noronha Archipelago, southern Atlantic Ocean,” Brazilian J. Geol. 45 (2), 307–333 (2015).

    Article  Google Scholar 

  29. B. Marty and N. Dauphas, “The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present,” Earth Planet Sci Lett. 206, 397–410 (2003).

    Article  Google Scholar 

  30. B. Marty and F. Humbert, “Nitrogen and argon isotopes in oceanic basalts,” Earth Planet Sci. Lett. 152, 101–112 (1997)

    Article  Google Scholar 

  31. B. Marty and L. Zimmermann, “Volatiles (H, C, N, Ar) in Mid-Ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition,” Geochim. Cosmochim. Acta 63, 3619–3633 (1999).

    Article  Google Scholar 

  32. N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D. V. Kuz’min, “Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11), 1289–1304 (2017).

    Article  Google Scholar 

  33. R. C. Mitchell-Thome, Geology of the South Atlantic Islands (Gebrueder Borntraeger, Berlin, 1970).

    Google Scholar 

  34. W. Mohriak, “Genesis and evolution of the South Atlantic volcanic islands offshore Brazil,” Geo–Mar. Lett. 40, 1–33 (2020).

    Article  Google Scholar 

  35. M. Moreira and J. A. Allegre, “Helium-neon systematics and the structure of the mantle,” Chem. Geol. 147, 53–59 (1998).

    Article  Google Scholar 

  36. M. Moreira, J. Allègre, and C. J. Kunz, “Rare gas systematics in popping rock, Isotopic and elemental compositions in the upper mantle,” Science 279, 1178–1181 (1998).

    Article  Google Scholar 

  37. M. Podosek and F. A. Ozima, Noble Gas Geochemistry, 2nd ed. (Cambridge University press, Cambridge, 2002).

    Google Scholar 

  38. R. Parai and S. Mukhopadhyay, “The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts,” Geochem. Geophys. Geosyst. 16, 719–735 (2015).

    Article  Google Scholar 

  39. F. Pineau and M. Javoy, “Carbon isotopes and concentrations in mid-oceanic ridge basalts,” Earth Planet. Sci. Lett. 62 (2), 239–257 (1983).

    Article  Google Scholar 

  40. G. Rivalenti, M. Mazzucchelli, V. Girardi, R. Vannucci, M. A. Barbiery, A. Zanetti, and S. L. Goldstein, “Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths,” Contrib. Mineral. Petrol. 138, 308–325 (2000).

    Article  Google Scholar 

  41. P. Scarsi, “Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio,” Geochim. Cosmochim. Acta 64 (21), pp. 3751–3762 (2000).

    Article  Google Scholar 

  42. B. Steinberger, “Plumes in a convecting mantle' models and observations for individual hotspots,” J. Geophys. Res. 105 (B5), 11 127–11 152 (2000)

    Article  Google Scholar 

  43. H. Sumino, R. Burgess, T. Mizukami, S. R. Wallis, G. Holland, and C. J. Ballentine, “Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite,” Earth Planet. Sci. Lett. 294 (1), 163–172 (2010).

    Article  Google Scholar 

  44. N. M. Sushchevskaya, B. V. Belyatsky, E. P. Dubinin, and O. V. Levchenko, “Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica,” Geochem. Int. 55 (9), 775–791 (2017).

    Article  Google Scholar 

  45. N. M. Sushchevskaya, B. V. Belyatsky, D. A. Tkacheva, G. L. Leitchenkov, D. V. Kuzmin, and A. V. Zhilkina, “Early Cretaceous alkaline magmatism of East Antarctica, peculiarities, conditions of formation, and relationship with the Kerguelen plume,” Geochem. Int. 56 (11), 1051–1070 (2018).

    Article  Google Scholar 

  46. N. M. Suschevskaya, B. V. Belyatsky, G. L. Leitchenkov, and R. Sh. Krymsky, “Sr, Nd, Pb, and os isotope systematics of the Mesozoic basalts of Antarctica associated with Karoo–Maud and Kerguelen plumes as a reflection of magma formation and their sources,” Geochem. Int. 61 (1), (2023).

  47. W. Teixeira, U. G. Cordani, E. A. Menor, M. G. Teixeira, and R. Linsker, Arquipélago Fernando de Noronha—O Paraíso do Vulcão (Terra Virgem, São Paulo, 2003).

    Google Scholar 

  48. M. Trieloff, J. Kunz, D. A. Clague, D. Allègre, and C. J. Harrison, “The nature of pristine noble gases in mantle plumes,” Science 288, 1036–1038 (2000).

    Article  Google Scholar 

  49. M. Trieloff, J. Kunz, and C. J. Allègre, “Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth’s mantle,” Earth Planet. Sci. Lett. 200, 297–313 (2002).

    Article  Google Scholar 

  50. T. Trull, S. Nadeau, F. Pineau, M. Polve´, and M. Javoy, “C–He systematics in hotspot xenoliths, Implications for mantle carbon contents and carbon recycling,” Earth Planet. Sci. Lett. 118 (1–4), 43–64 (2003).

    Article  Google Scholar 

  51. J. M. Tucker, S. Mukhopadhyay, and J. G. Schilling, “The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle,” Earth Planet. Sci. Lett. 355, 244–254 (2012).

    Article  Google Scholar 

  52. M. N. C. Ulbrich, L. S. Marques, and R. P. Lopes, “As ilhas vulcânicas brasileiras, Fernando de Noronha e Trindade,” In Geologia do Continente Sul–Americano, Evolução da Obra de Fernando Flávio Marques de Almeida Mantesso-Neto, Ed. by V. Bartorelli, A. Carneiro, C. D. R. Brito-Neves, (Editora Beca, 2004), pp. 514–555 (2004).

    Google Scholar 

  53. P. J. Valbracht, M. Honda, T. Matsumoto, N. Mattielli, I. McDougall, R. Ragettli, and D. Weis, “Helium, neon and argon isotope systematics in Kerguelen ultramafic xenoliths, implications for mantle source signatures,” Earth Planet. Sci. Lett. 138, 29–38 (1996).

    Article  Google Scholar 

  54. A. B. Verchovsky, “Origin of isotopically light nitrogen in meteorites,” Geochem. Int. 55 (11), 957–970 (2017).

    Article  Google Scholar 

  55. A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger, “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199, 243–255 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the reviews by A. Shiryaev and A. Bychkov.

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation (grant no. 13.1902.21.008, agreement 075-15-2020-802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Buikin, J. Hopp or A. B. Verchovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buikin, A.I., Hopp, J., Kogarko, L.N. et al. He–Ne–Ar–N2–CO2 Systematics of Fernando de Noronha Mantle Xenoliths: Confirmation of Mantle Plume Origin. Geochem. Int. 60, 1380–1392 (2022). https://doi.org/10.1134/S0016702922130055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922130055

Keywords:

Navigation