Skip to main content
Log in

The Investigation of Critical Temperature Tc of Homophase Superconductors Bi1.7Pb0.3Sr2Ca(n– 1)CunOy (n = 3, 4, 5) and Current–Voltage Characteristics of InP Semiconductor–Bi/Pb Superconductor (2223, 2234, 2245) Sandwich Pairs

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrophysical properties of semiconductor–superconductor sandwich pairs (InP–Bi/Pb 2223, 2234, 2245) are investigated, in which homophase superconductors based on bismuth cuprates with high reproducible critical temperatures of superconducting transition Tc = 107–180 K are used. The advantage of melt solar technology for obtaining superconducting materials is demonstrated. The microstructure and phase composition of strongly anisotropic superconductors with nominal composition Bi1.7Pb0.3Sr2Ca(n– 1)CunOy (n = 3, 4, 5) are researched. A technique of experimental determination of superconducting transition critical temperatures Tc in single-phase and homophase HTSC samples is presented. The current–voltage characteristics of InP–Bi/Pb pairs are investigated. The relationship between the electrical resistance of sandwich pairs and superconductor critical temperature Tc is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. D. Tret’yakov and P. E. Kazin, Neorg. Mater. 29, 1571 (1993).

    Google Scholar 

  2. Y. Abe, Superconducting Glass-Ceramics in Bi-Sr-Ca-Cu-O: Fabrication and Its Application (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  3. J. Chigvinadze, J. Acrivos, D. Gulamova, S. Ashimov, T. Machaidze, O. Magradze, G. Donadze, G. Dvali, and D. Uskenbaev, Proc. Int. Sci. Conf. “Basic Paradigms in Science and Technology Development for the 21th Century,” Tbilisi, Georgia, 2012, p. 70.

  4. J. G. Chigvinadze, D. D. Gulamova, S. M. Ashimov, T. V. Machaidze, O. V. Maghradze, G. J. Donadze, and D. E. Uskenbaev, in New Developments in Materials Science, Ed. by E. Chikoidze and T. Tchelidze (Nova Sci., 2010), Chap. 2.

    Google Scholar 

  5. J. Chigvinadze, J. Acrivos, S. Ashimov, D. D. Gulamova, and G. J. Donadze, arXiv:1710.10430 [cond-mat.supr-con].

  6. S. M. Ashimov and Dzh. G. Chigvinadze, Instrum. Exp. Tech. 45, 431 (2002).

    Article  Google Scholar 

  7. J. Chigvinadze, V. Buntar, S. Ashimov, T. Machaidze, and G. Donadze, Proc. 1st Int. Conf. “Nanochemistry and Nanotechnologies,” Tbilisi, Georgia, 2010, p. 238.

  8. A. V. Karimov, D. M. Edgorova, O. A. Abdulkhaev, E. N. Yakubov, Sh. Sh. Yuldashev, and A. A. Turaev, Fiz. Inzh. Poverkhn. 10, 308 (2012).

    Google Scholar 

  9. A. K. Yahya, A. K. Koh, and R. Abd-Shukor, Phys. Lett. A 259, 295 (1999).

    Article  ADS  Google Scholar 

  10. N.-C. Shi, F. Ma, Z.-S. Wang, X.-F. Rong, T.-S. Du, and J. Zhou, Chin. Sci. Bull. 35, 573 (1990).

    Google Scholar 

  11. A. Sequeira, H. Rajagopal, P. V. P. S. S. Sastry, J. V. Yakhmi, and R. M. Iyer, Phys. C 173, 267 (1991).

    Article  ADS  Google Scholar 

  12. J. M. Tarascon et al., Phys. Rev. B 37, 9382 (1988).

    Article  ADS  Google Scholar 

  13. Dzh. G. Chigvinadze, J. Exp. Theor. Phys. 36, 1132 (1973).

  14. Dzh. G. Chigvinadze, J. Exp. Theor. Phys. 38, 960 (1974).

  15. S. M. Ashimov, J. S. Tsakadze, and N. L. Nedzelyak, Proc. 21st All-Union Meeting On Low Temperature Physics, Kharkov, USSR, 1980, Vol. 1, p. 309.

  16. C. Duran, P. Esquinazi, J. Luzuriada, and E. H. Brandt, Phys. Lett. A 123, 485 (1987).

    Article  ADS  Google Scholar 

  17. V. R. Karasik and J. G. Chigvinadze, Proc. 25th All-Union Meeting On Low Temperature Physics, Leningrad, USSR, 1988, Vol. 1, p. 229.

  18. S. M. Ashimov, Proc. 18th All-Union Meeting on Physics of Magnetic Phenomena, Kalinin, USSR, 1988, p. 57.

  19. V. P. Galaiko, JETP Lett. 17, 21 (1973).

    ADS  Google Scholar 

  20. A. A. Abrikosov, J. Phys. Chem. Solids 2, 199 (1957).

    Article  ADS  Google Scholar 

  21. P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop, Phys. Rev. Lett. 61, 1666 (1988).

    Article  ADS  Google Scholar 

  22. D. E. Farrell, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 67, 1165 (1991).

    Article  ADS  Google Scholar 

  23. K. Tayson, J. Kmiec, J. V. Acrivos, D. D. Gulamova, and J. G. Chigvenadze, Proc. National ACS Meeting, San Diego, United States, 2012.

  24. V. V. Petrashko, B. V. Novysh, N. A. Prytkova, E. M. Gololobov, and L. A. Kurochkin, Tech. Phys. Lett. 26, 354 (2000).

    Article  ADS  Google Scholar 

Download references

FUNDING

The study was carried out under project funding by the Academy of Sciences of the Republic of Uzbekistan (no. F2-FA-0-49021F2-FA-F088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. D. Gulamova or D. G. Chigvinadze.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulamova, D.D., Karimov, A.V., Chigvinadze, D.G. et al. The Investigation of Critical Temperature Tc of Homophase Superconductors Bi1.7Pb0.3Sr2Ca(n– 1)CunOy (n = 3, 4, 5) and Current–Voltage Characteristics of InP Semiconductor–Bi/Pb Superconductor (2223, 2234, 2245) Sandwich Pairs. Tech. Phys. 64, 540–546 (2019). https://doi.org/10.1134/S106378421904011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421904011X

Navigation