Skip to main content
Log in

Evaluation of the Migration Capacity of Zn in the Soil–Plant System

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrochemical Methods of Soil Studies (Nauka, Moscow, 1975) [in Russian].

  2. Yu. V. Alekseev, Heavy Metals in Soils and Plants (Agropromizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  3. V. S. Anisimov, L. N. Anisimova, L. M. Frigidova, D. V. Dikarev, R. A. Frigidov, I. V. Kochetkov, and N. I. Sanzharova, “Evaluation of migration capacity of Zn in the soil–plant system,” Biogeosyst. Techn. 4 (2), 153–163 (2015). doi 10.13187/bgt.2015.4.153. http:// www.ejournal19.com.10.13187/bgt.2015.4.153

    Article  Google Scholar 

  4. V. S. Anisimov, I. V. Kochetkov, D. V. Dikarev, L. N. Anisimova, Yu. N. Korneev, and L. M. Frigidova, “Effect of the physicochemical parameters of soils on the biological availability of natural and radioactive zinc,” Eurasian Soil Sci. 49, 868–878 (2016). doi 10.1134/S1064229316080020

    Article  Google Scholar 

  5. V. S. Anisimov, N. I. Sanzharova, L. N. Anisimova, S. A. Geras’kin, D. V. Dikarev, L. M. Frigidova, R. A. Frigidov, and N. V. Belova, “Evaluation of migration capacity and phytotoxicity of Zn in the soil–plant system,” Agrokhimiya, No. 1, 64–74 (2013).

    Google Scholar 

  6. E. V. Arinushkina, Chemical Analysis of Soils and Grounds (Moscow State Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  7. M. A. Bardyshev, Mineral Nutrition of Potato Plants (Nauka i Tekhnika, Minsk, 1984) [in Russian].

    Google Scholar 

  8. V. N. Bashkin and N. S. Kasimov, Biogeochemistry (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  9. I. V. Gulyakin and E. V. Yudintseva, Agricultural Radiobiology (Kolos, Moscow, 1973) [in Russian].

    Google Scholar 

  10. A. W. Galston, P. S. Davis, and R. L. Satter, The Life of the Green Plant (Prentice-Hall, New Jersey, 1980; Mir, Moscow, 1983).

    Google Scholar 

  11. D. V. Dubovik and E. V. Dubovik, “Heavy metals in ordinary chernozems on slopes of different gradients and aspects,” Eurasian Soil Sci. 49, 33–44 (2016). doi 10.1134/S1064229316010051

    Article  Google Scholar 

  12. V. B. Il’in, “Assessment of soil buffer capacity with respect to heavy metals,” Agrokhimiya, No. 10, 109–113 (1995).

    Google Scholar 

  13. A. L. Kovalevskii, Doctoral Dissertation in Geology-Mineralogy (Moscow, 1983).

    Google Scholar 

  14. J. Koolman and K.-H. Röhm, Biochemie mit Vielen Bildern (Thieme, Stuttgart, 1996; Mir, Moscow, 2000).

    Google Scholar 

  15. S. V. Kruglov, V. S. Anisimov, G. V. Lavrent’eva, and L. N. Anisimova, “Parameters of selective sorption of Co, Cu, Zn, and Cd by a soddy-podzolic soil and a chernozem,” Eurasian Soil Sci. 42, 385–393 (2009).

    Article  Google Scholar 

  16. D. V. Ladonin and O. V. Plyaskina, “Mechanisms of Cu(II), Zn(II), Pb(II) sorption by soddy-podzolic soil,” Eurasian Soil Sci. 37, 460–468 (2004).

    Google Scholar 

  17. S. S. Mandzhieva, T. M. Minkina, G. V. Motuzova, S. E. Golovatyi, N. N. Miroshnichenko, N. K. Lukashenko, and A. I. Fateev, “Fractional and group composition of zinc and lead compounds as an indicator of the environmental status of soils,” Eurasian Soil Sci. 47, 511–518 (2014). doi 10.1134/S1064229314050159

    Article  Google Scholar 

  18. S. S. Medvedev, The Plant Physiology (St. Petersburg State Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  19. Methodological Recommendations for Determination of Heavy Metals in Agricultural Soils and Products (Central Scientific Research Institute of Agrochemical Service, Moscow, 1992) [in Russian].

  20. G. V. Motuzova, Compounds of Trace Elements in Soils: System Organization, Ecological Value, and Monitoring (Editorial URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  21. P. H. Nye and P. B. Tinker, Solute Movement in the Soil-Root System (Blackwell, Oxford, 1977; Kolos, Moscow, 1980).

    Google Scholar 

  22. O. V. Nesterova, V. G. Tregubova, and V. A. Semal, “Use of regulatory documents for assessing the contamination of soils with heavy metals, Eurasian Soil Sci. 47, 1161–1166 (2014). doi 10.1134/S1064229314110088

    Article  Google Scholar 

  23. R. I. Pervunina and N. G. Zyrin, “Migration of cadmium compounds in modeled agrobiocenosis,” Proceedings of the Second All-Russia Conference “Migration of Pollutants in Soils and Adjacent Media” (Obninsk, 1978), pp. 182–191.

    Google Scholar 

  24. A. I. Perel’man, Geochemistry of Landscape (Vysshaya Shkola, Moscow, 1975) [in Russian].

    Google Scholar 

  25. D. L. Pinskii, Ion Exchange in Soils (Pushchino, 1997) [in Russian].

    Google Scholar 

  26. Practicum on Agrochemistry, Ed. by V. G. Mineev (Moscow State Univ., Moscow, 2001) [in Russian].

  27. N. L. Rashkovich, “Modeling of mineral nutrition of the plants by regression analysis,” Agrokhimiya, No. 6, 97–106 (1995).

    Google Scholar 

  28. G. Ya. Rin’kis, Kh. K. Ramane, G. V. Paegle, and T. A. Kunitskaya, Optimization System and Diagnostics of Mineral Nutrition of the Plants (Zinatne, Riga, 1989) [in Russian].

    Google Scholar 

  29. T. A. Sokolova, I. I. Tolpeshta, and S. Ya. Trofimov, Soil Acidity. Acid-Base Buffering of Soils. Aluminum Compounds in Solid Phase of Soil and in Soil Solution (Grif i K, Tula, 2012) [in Russian]

    Google Scholar 

  30. T. A. Sokolova and S. Ya. Trofimov, Sorption Properties of Soils. Adsorption. Cation Exchange: Manual on Some Issues of Soil Chemistry (Grif i K, Tula, 2009) [in Russian].

    Google Scholar 

  31. R. A. Frigidov, V. S. Anisimov, L. M. Frigidova, S. A. Geras’kin, L. N. Anisimova, Yu. N. Korneev, and N. I. Sanzharova, “Influence of Zn concentration in soils on accumulation of biomass and metals in the barley plants,” Agrokhimiya, No. 12, 42–54 (2014).

    Google Scholar 

  32. Chemistry of Heavy Metals, Arsenic, and Molybdenum in Soils, Ed. by N. G. Zyrin and L. K. Sadovnikova (Moscow State Univ., Moscow, 1985) [in Russian].

  33. Zinc and Cadmium in the Environment, Ed. by V. V. Dobrovol’skii (Nauka, Moscow, 1992) [in Russian].

  34. N. A. Chernykh, N. Z. Milashchenko, and V. F. Ladonin, Exotoxicological Aspects of Soil Pollution by Heavy Metals (Agrokonsalt, Moscow, 1999) [in Russian].

    Google Scholar 

  35. V. N. Yakimenko and G. A. Konarbaeva, “Transformation of the pool of heavy metals in gray forest soils of agrocenoses,” Agrokhimiya, No. 4, 61–69 (2016).

    Google Scholar 

  36. V. S. Anisimov, I. V. Kochetkov, D. V. Dikarev, L. N. Anisimova, and Y. N. Korneev, “Effects of physical-chemical properties of soils on 60Co and 65Zn bioavailability,” J. Soils Sediments 15 (11), 2232–2243 (2015). doi 10.1007/s11368-015-1153-z

    Article  Google Scholar 

  37. A. J. M. Baker, “Accumulators and excluders—strategies in the response of plants to heavy metals,” J. Plant Nutr. 3, 643–654 (1981). doi 10.1080/01904168109362867

    Article  Google Scholar 

  38. S. A. Barber, Soil Nutrient Bioavailability: A Mechanistic Approach (Wiley, New York, 1995), 2nd ed.

    Google Scholar 

  39. B. C. F. Barbosa, S. C. Silva, R. R. de Oliveira, et al., “Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants,” Plant Soil 411 (1–2), 179–191 (2017). doi 10.1007/ s11104-016-2983-1

    Article  Google Scholar 

  40. P. Beckett, “Potassium-calcium exchange equilibria in soils: specific adsorption sites for potassium,” Soil Sci. 97 (6), 376–383 (1964).

    Article  Google Scholar 

  41. P. H. T. Beckett and M. H. M. Nafady, “Potassium–calcium exchange equilibria in soils: the location of non-specific (Gapon) and specific exchange sites,” J. Soil Sci. 18 (2), 263–281 (1967).

    Article  Google Scholar 

  42. P. H. T. Beckett, “Studies on soil potassium II. The ‘immediate’ Q/I relations of labile potassium in the soil,” J. Soil Sci. 15 (1), 9–23 (1964).

    Article  Google Scholar 

  43. C. Caldelas and D. J. Weiss, “Zinc homeostasis and isotopic fractionation in plants: a review,” Plant Soil 411 (1–2), 17–46 (2017). doi 10.1007/s11104-016-3146-0

    Article  Google Scholar 

  44. C. Cosio, E. Martinoia, and C. Keller, “Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level,” Plant Physiol. 134, 716–725 (2004). https://doi.org/10.1104/ pp.103.031948.

    Article  Google Scholar 

  45. H. D. Foth, Fundamentals of Soil Science (Wiley, New York, 1990).

    Google Scholar 

  46. G. Hacisalihoglu and L. V. Kochian, “How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants,” New Phytol. 159, 341–350 (2003). doi 10.1046/j.1469-8137.2003.00826.x

    Article  Google Scholar 

  47. G. Hacisalihoglu, J. J. Hart, and L. V. Kochian, “Highand low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat,” Plant Physiol. 125 (1), 456–463 (2001). https://doi.org/ 10.1104/pp.125.1.456.

    Article  Google Scholar 

  48. J. J. Hart, W. A. Norvell, R. M. Welch, L. A. Sullivan, and L. V. Kochian, “Characterization of zinc uptake, binding, and translocation of bread and durum wheat cultivars,” Plant Physiol. 118 (1), 219–226 (1998). https://doi.org/10.1104/pp.118.1.219

    Article  Google Scholar 

  49. D. L. Jones and P. R. Darrah, “Role of root derived organic acids in the mobilization of nutrients from the rhizosphere,” Plant Soil 166, 247–257 (1994). doi 10.1007/BF00008338

    Article  Google Scholar 

  50. D. L. Jones, A. C. Edwards, K. Donachiei, and P. R. Darrah, “Role of proteinaceous amino acids released in root exudates in nutrient acquisition from the rhizosphere,” Plant Soil 158, 183–192 (1994). doi 10.1007/BF00009493

    Article  Google Scholar 

  51. A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, London, 2011).

    Google Scholar 

  52. Y. F. Lin and M. G. M. Aarts, “The molecular mechanism of zinc and cadmium stress response in plants,” Cell. Mol. Life Sci. 69 (19), 3187–3206 (2012). doi 10.1007/s00018-012-1089-z

    Article  Google Scholar 

  53. X. Liu, J. Chen, G. H. Wang, et al., “Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L.,” Plant Soil 400 (1–2), 177–192 (2016). doi 10.1007/s11104-015-2719-7

    Article  Google Scholar 

  54. N. S. Pence, P. B. Larsen, S. D. Ebbs, D. L. D. Letham, M. M. Lasat, D. F. Garvin, D. Eide, and L. V. Kochian, “The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens,” Proc. Natl. Acad. Sci. U.S.A. 97 (9), 4956–4960 (2000). doi 10.1073/pnas.97.9.4956

    Article  Google Scholar 

  55. K. J. Reddy, L. Wang, and S. P. Gloss, “Solubility and mobility of copper, zinc and lead in acidic environments,” Plant Soil 171, 53–58 (1995). doi 10.1007/ BF00009564

    Article  Google Scholar 

  56. P. N. Sharma, C. Chatterjee, S. C. Agarwala, and C. P. Sharma, “Zinc deficiency and pollen fertility in maize (Zea mays),” Plant Soil 124, 221–225 (1990). doi 10.1007/BF00009263

    Article  Google Scholar 

  57. V. Subhashini, A. V. V. S. Swamy, and R. H. Krishna, “Pot experiment: to study the uptake of zinc by different plant species in artificially contaminated soil,” World J. Environ. Eng. 1 (2), 27–33 (2013). doi 10.12691/wjee-1-2-3

    Google Scholar 

  58. J. Tiong, G. K. McDonald, Y. Genc, et al., “HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply,” New Phytol. 201, 131–143 (2014). doi 10.1111/nph.12468

    Article  Google Scholar 

  59. M. Walter, E. Oburger, Y. Schindlegger, S. Hann, M. Puschenreiter, S. M. Kraemer, and W. D. C. Schenkeveld, “Retention of phytosiderophores by the soil solid phase—adsorption and desorption,” Plant Soil 404, 85–97 (2016). doi 10.1007/s11104-016-2800-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Anisimov.

Additional information

Original Russian Text © V.S. Anisimov, L.N. Anisimova, L.M. Frigidova, D.V. Dikarev, R.A. Frigidov, Yu.N. Korneev, A.I. Sanzharov, S.P. Arysheva, 2018, published in Pochvovedenie, 2018, No. 4, pp. 427–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, V.S., Anisimova, L.N., Frigidova, L.M. et al. Evaluation of the Migration Capacity of Zn in the Soil–Plant System. Eurasian Soil Sc. 51, 407–417 (2018). https://doi.org/10.1134/S1064229318040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318040026

Keywords

Navigation