Skip to main content
Log in

Use of Angiotensin II Receptor Blockers, Angiotensin I-Converting Enzyme Polymorphism and Associations with Memory Performance in Older People

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

We explored the relationships between the use of Angiotensin II receptor blockers (ARBs), Angiotensin I-converting enzyme (ACE) genetic polymorphisms and memory performance in older adults, whilst controlling for confounders. Retrospective observational case-control study. 104 patients over 60 years of age (mean age 74) without known cognitive disorder were included, 52 cases (ARB users) and 52 controls (non-users). ACE insertion/deletion (ACE I/D) polymorphism was determined in all patients. The Wechsler Memory Scale (memory quotient) was used to evaluate cognition. We measured years of education, Charlson Comorbidity Index (CCI) and total number of medications taken. The mean (SD) age in cases and controls were: 75.3 (7.5) and 72.0 (7.0) respectively (p = 0.020). Cases had higher CCI (p = 0.006) and took more medications (p < 0.001). Cases had a higher memory quotient: 99.6 (5.9) and 95.3 (6.7) (p < 0.001). In the I/I group, cases had higher memory quotient [99.5 (5.5) vs. 95.0 (5.7), p = 0.005]. No significant difference in memory performance was found between cases and controls within genotype ACE I/D (p = 0.056) and D/D (p = 0.290). A multiple linear regression predicting memory score in n = 104 (predictors: ARB use, age, female sex, years of education, CCI, number of medications, ACE I/I status, interaction ARB user ACE I/I status) suggested that only ARB use (p = 0.001) and higher education (p < 0.001) were significant predictors of higher memory performance. Despite ARB users being older and more comorbid, their memory was better even when controlling for the ACE I/I risk genotype. Education may confer cognitive reserve. The protective role of ARBs merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Blazer, D., Neurocognitive disorders in DSM-5, Am. J. Psychiatry, 2013, vol. 6, pp. 585–587.

    Article  Google Scholar 

  2. Charlson, M., Pompei, P., Ales, K.L., and MacKenzie, C.R., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation, J. Chronic Dis., 1987, vol. 40, pp. 373–383.

    Article  CAS  Google Scholar 

  3. Dai, H., Hu, W., Jiang, L., et al., p38 MAPK inhibition improves synaptic plasticity and memory in angiotensin II-dependent hypertensive mice, Sci. Rep., 2016, vol. 6, no. 10, p. 27600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Danser, A., Schalekamp, M.A., Bax, W.A., et al., Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism, Circulation, 1995, vol. 92, pp. 1387–1388.

    Article  CAS  PubMed  Google Scholar 

  5. Darwish, H., Farran, N., Assaad, S., and Chaaya, M., Cognitive reserve factors in a developing country: education and occupational attainment lower the risk of dementia in a sample of Lebanese older adults, Front. Aging Neurosci., 2018, vol. 10, p. 277.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Brito-Marques, P., Cabral-Filho, J.E., and Miranda, R.M., Visual reproduction test in normal elderly: influence of schooling and visual task complexity, Dementia Neuropsychol., 2012, vol. 6, no. 2, pp. 91–96.

    Article  Google Scholar 

  7. Elkins, J., Douglas, V.C., and Johnston, S.C., Alzheimer disease risk and genetic variation in ACE: a meta-analysis, Neurology, 2004, vol. 62, pp. 363–368.

    Article  CAS  PubMed  Google Scholar 

  8. Farag, E., Sessler, D., Ebrahim, Z., Kurz, A., Morgan, J., Ahuja, S., et al., The renin angiotensin system and the brain: new developments, J. Clin. Neurosci., 2017, vol. 46, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Franken, R., Bellesso, M., Cavazin, A., et al., Associação do polimorfismo do gene da enzima conversora da angiotensina com dados ecocardiográficos em jovens normotensos filhos de hipertensos, Rev. Assoc. Med. Bras., 2004, vol. 50, no. 1, pp. 62–67.

    Article  PubMed  Google Scholar 

  10. Fratiglioni, L. and Wang, H., Brain reserve hypothesis in dementia, J. Alzheimer’s Dis., 2007, vol. 12, pp. 11–22.

    Article  Google Scholar 

  11. Gatz, M., Reynolds, C.A., Fratiglioni, L., et al., Role of genes and environments for explaining Alzheimer disease, Arch. Gen. Psychiatry, 2006, vol. 63, pp. 168–174.

    Article  PubMed  Google Scholar 

  12. Ho, J. and Nation, D., Memory is preserved in older adults taking AT1 receptor blockers, Alzheimer’s Res. Ther., 2017, vol. 9, no. 1, p. 33.

    Article  Google Scholar 

  13. Inaba, S., Iwai, M., Furuno, M., et al., Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice, Hypertension, 2009, vol. 53, no. 2, pp. 356–362.

    Article  CAS  PubMed  Google Scholar 

  14. Kim-Mitsuyama, S., Yamamoto, E., Tanaka, E., et al., Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats, Stroke, 2005, vol. 36, pp. 1083–1088.

    Article  PubMed  Google Scholar 

  15. Kunkle, B., Grenier-Boley, S., Bis, J., et al., Meta-analysis of genetic association with diagnosed Alzheimer’s disease identifies novel risk loci and implicates Abeta, Tau, immunity and lipid processing // bioRxiv. Preprint first posted online. Apr. 4, 2018). https://doi.org/10.1038/s41588-019-0358-2

  16. Lahiri, D. and Nurnberger, J., A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies, Nucleic Acids Res., 1991, vol. 19, no. 19, p. 5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larsson, S. and Markus, H., Does treating vascular risk factors prevent dementia and Alzheimer’s disease? A systematic review and meta-analysis, J. Alzheimer’s Dis., 2028, vol. 64, no. 2, pp. 657–668.

  18. Lehmann, D., Cortina-Borja, M., Warden, D., et al., Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer’s disease, Am. J. Epidemiol., 2005, vol. 162, no. 4, pp. 305–317.

    Article  PubMed  Google Scholar 

  19. Livingston, G., Sommerlad, A., Orgeta, V., et al., Dementia prevention, intervention, and care, Lancet, 2017, vol. 390, pp. 2673–2734.

    Article  PubMed  Google Scholar 

  20. Lobo, A., Saz, P., Marcos, G., et al., Revalidación y normalización del Mini-Examen Cognoscitivo (primera versión en castellano del Mini-Mental Status Examination) en la población general geriátrica, Med. Clin. (Barcelona), 1999, vol. 112, no. 20, pp. 767–774.

    CAS  Google Scholar 

  21. Meng, X. and D’Arcy, C., Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses, PLoS One, 2012, vol. 7, no. 6, p. e38268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno-Grau, S., et al., Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer disease and three causality networks of AD: the GR@ACE project, bioRxiv, 2019. 528901. https://www.biorxiv.org/content/10.1101/528901v1.abstract.

  23. Morisky, D. et al., Concurrent and predictive validity of a self-reported measure of medication adherence, Med. Care, 1986, vol. 24, pp. 67–74.

    Article  CAS  PubMed  Google Scholar 

  24. Prince, M., Bryce, R., Albanese, E., et al., The global prevalence of dementia: a systematic review and metaanalysis, Alzheimer’s Dementia, 2013, vol. 9, no. 1, pp. 63–75. е2.

    Article  PubMed  Google Scholar 

  25. Prince, M., Acosta, D., Ferri, C., et al., Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study, Lancet, 2012, vol. 380, pp. 50–58.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reisberg, B., Doody, R., Stoffler, A., et al., Memantine in moderate-to-severe Alzheimer’s disease, New Engl. J. Med., 2003, vol. 348, pp. 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  27. Schuch, J., Constantin, P., Da Silva, V., et al., ACE polymorphism and use of ACE inhibitors: effects on memory performance, Age (Dordrecht), 2014, vol. 36, no. 3, p. 9646.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stocker, H., Möllers, T., Perna, L., and Brenner, H., The genetic risk of Alzheimer’s disease beyond APOE ε4: systematic review of Alzheimer’s genetic risk scores, Transl. Psychiatry, 2018, vol. 8, no. 1, p. 166.

    Article  PubMed  PubMed Central  Google Scholar 

  29. WMS-III Escala de Memoria de Wechsler–III D Wechsler. Manual de Aplicación y Corrección, Madrid: TEA Ediciones, 2004.

  30. Xu, W., Tan, L., Wang, H., et al., Education and risk of dementia: dose-response meta-analysis of prospective cohort studies, Mol. Neurobiol., 2016, vol. 53, no. 5, pp. 3113–3123.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, L., Zhou, H., Ye, Y., et al., Association of PS1 1/2, ACE I/D, and LRP C/T polymorphisms with Alzheimer’s disease in the Chinese population: a meta-analysis of case-control studies, Genet. Mol. Res., 2015, vol. 14, no. 1, pp. 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  32. Yesavage, J., Brink, T., Rose, T., et al., Development and validation of a geriatric depression screening scale: a preliminary report, J. Psychiatr. Res., 1982–1983, vol. 17, no. 1, pp. 37–49.

  33. Zhuang, S., Wang, H., Wang, X., et al., The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: a meta-analysis, J. Clin. Neurosci., 2016, vol. 33, pp. 32–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

ESSALUD—Kaelin Grant, Institute of Health Technology Assessment and Research-IETSI. Lima Peru. Resolution no. 04-IETSI-ESSALUD-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Oscanoa.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects.

—All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of the Hospital Almenara—ESSALUD, Lima, Peru.

—This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Hospital Almenara, Lima, Peru (May 2016).

—Approval was obtained from the ethics committee of Ethics Committee of the Hospital Almenara, Lima Peru (May 2016). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

—The questionnaire and methodology for this study was approved by the Human Research Ethics committee of the Almenara Hospital-ESSALUD (Ethics approval number: carta no. 129-CEI-OCIDG-G-RAA-ESSA\({{\tilde {N}}}\)UD-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oscanoa, T.J., Cieza, E.C., Grimaldo, O. et al. Use of Angiotensin II Receptor Blockers, Angiotensin I-Converting Enzyme Polymorphism and Associations with Memory Performance in Older People. Adv Gerontol 11, 208–213 (2021). https://doi.org/10.1134/S2079057021020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057021020107

Keywords:

Navigation