Skip to main content
Log in

Pervaporation of Water–Alcohol Mixtures on Cation-Exchanged LTA Zeolite Membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Na-LTA membranes have been synthesized on porous nickel supports by in situ crystallization from a true solution. K-LTA and Ca-LTA membranes have been prepared from Na-LTA membranes by ion exchange in 1 M KCl and CaCl2 solutions, respectively. The formation of the LTA structure, its preservation during ion exchange, and achievement of nearly 100% replacement in the near-surface layer of the zeolite membranes have been proven by means of XPD and SEM-EDX. All the zeolite membranes synthesized have been tested in pervaporation of isopropanol–water, ethanol–water, and methanol–water mixtures containing 10 wt % water. It has been found that the mass flux of alcohol does not depend on the nature of alcohol or zeolite cation if the kinetic diameter of alcohol molecule is greater the effective diameter of zeolite pores. A new method for evaluating of the mass flux through nonzeolite pores based on pervaporation data has been proposed. The estimated mass flux through nonzeolite pores for all the zeolite membranes tested is 15 ± 3 g m−2 h−1 which is 1.6 to 7.6% of the total transmembrane mass flux depending on the alcohol chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Guan, K. Kusakabe, and S. Morooka, Sep. Sci. Technol. 36, 2233 (2001).

    Article  CAS  Google Scholar 

  2. F. J. Varela-Gandía, Á. Berenguer-Murcia, D. Lozano-Castelló, and D. Cazorla-Amorós, J. Membr. Sci. 378, 407 (2011).

    Article  CAS  Google Scholar 

  3. S. G. Sorenson, E. A. Payzant, W. T. Gibbons, et al., J. Membr. Sci. 366, 413 (2011).

    Article  CAS  Google Scholar 

  4. S. Shirazian and S. N. Ashrafizadeh, J. Ind. Eng. Chem. 22, 132 (2015).

    Article  CAS  Google Scholar 

  5. J. Caro and M. Noack, Adv. Nanoporous Mater. 1, 1 (2010).

    Article  Google Scholar 

  6. F. Qu, R. Shi, L. Peng, et al., J. Membr. Sci. 539, 14 (2017).

    Article  CAS  Google Scholar 

  7. A. Huang and W. Yang, Mater. Lett. 61, 5129 (2007).

    Article  CAS  Google Scholar 

  8. S. Mintova, V. Valtchev, N. Petkov, et al., Stud. Surf. Sci. Catal. 154, 717 (2004).

    Article  Google Scholar 

  9. Y. Liu, Z. Yang, C. Yu, X. Gu, N. Xu, Microporous Mesoporous Mater. 143, 348 (2011).

    Article  CAS  Google Scholar 

  10. M. Pera-Titus, J. Llorens, F. Cunill, et al., Catal. Today 104, 281 (2005).

    Article  CAS  Google Scholar 

  11. A. Huang and W. Yang, Mater. Res. Bull. 42, 657 (2007).

    Article  CAS  Google Scholar 

  12. W. Shan, Y. Zhang, W. Yang, et al., Microporous Mesoporous Mater. 69, 35 (2004).

    Article  CAS  Google Scholar 

  13. M. Sen, K. Dana, and N. Das, Ultrasonics Sonochem. 48, 299 (2018).

    Article  CAS  Google Scholar 

  14. Q. Ge, J. Shao, Z. Wang, and Y. Yan, Microporous Mesoporous Mater. 151, 303 (2012).

    Article  CAS  Google Scholar 

  15. Y. Li, H. Chen, J. Liu, and W. Yang, J. Membr. Sci. 277, 230 (2006).

    Article  CAS  Google Scholar 

  16. D. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  17. T. Yamamoto, Y. H. Kim, B. C. Kim, et al., Chem. Eng. J. 181–182, 443 (2012).

    Article  CAS  Google Scholar 

  18. T. E. Clark, H. W. Deckman, D. M. Cox, and R. R. Chance, J. Membr. Sci. 230, 91 (2004).

    Article  CAS  Google Scholar 

  19. M. Noack, P. Kölsch, A. Dittmar, et al., Microporous Mesoporous Mater. 102, 1 (2007).

    Article  CAS  Google Scholar 

  20. M. Pera-Titus, J. Llorens, and F. Cunill, Chem. Eng. Sci. 63, 2367 (2008).

    Article  CAS  Google Scholar 

  21. S. Aguado, J. Gascon, J. C. Jansen, and F. Kapteijn, Microporous Mesoporous Mater. 120, 170 (2009).

    Article  CAS  Google Scholar 

  22. D. A. Fedosov, A. V. Smirnov, V. V. Shkirskiy, et al., J. Membr. Sci. 486, 189 (2015).

    Article  CAS  Google Scholar 

  23. M. E. van Leeuwen, Fluid Phase Equilib. 99, 1 (1994).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-38-00923\18, the number at the Center of Information Technologies and Systems for Executive Power Authorities is AAAA-A18-118051790010-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Fedosov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artsiusheuski, N.A., Grachev, A.L., Kolozhvari, B.A. et al. Pervaporation of Water–Alcohol Mixtures on Cation-Exchanged LTA Zeolite Membranes. Pet. Chem. 59, 880–886 (2019). https://doi.org/10.1134/S0965544119080024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119080024

Keywords:

Navigation