Skip to main content
Log in

NRF2 and HMOX1 Gene Expression against the Background of Systemic Oxidative Stress in Patients with Acute Psychosis

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate NRF2 and HMOX1 gene expression against the background of systemic oxidative stress in patients with acute psychosis. The study included 40 patients with newly developed paranoid schizophrenia, 22 subjects with new-onset acute psychosis associated with excessive alcohol consumption, and 25 healthy volunteers. The signs of systemic oxidative stress were assessed by 8-dihydro-2'-deoxyguanosine (8-oxodG) contents in peripheral blood lymphocytes (PBL) and in cell-free (cf) DNA samples obtained from plasma specimens of the patients and healthy controls. The patients of both groups demonstrated a significant (a hundredfold) increase in 8-oxodG content in cfDNA samples and a marked (5- to 8-fold) elevation of 8-oxodG concentration in PBL. Against the background of systemic oxidative stress, there was a statistically significant increase in NRF2 protein expression as well as marked elevation of NRF2 and Hmox1 gene transcriptional activity in PBL obtained from alcoholic patients. In contrast, the subjects with newly developed paranoid schizophrenia demonstrated decrease in expression of NRF2, the master regulator of anti-oxidant defenses, as well as reduction of NRF-2 and Hmox1 gene transcriptional activity compared to both healthy controls and alcoholic patients. In conclusion, against the background of systemic oxidative stress associated acute psychosis development, PBL of patients with paranoid schizophrenia was characterized by reduced NRF2 gene transcriptional activity and decreased NRF2 protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Patel, S., Sharma, D., Kalia, K., and Tiwari, V., Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: the dawn of new therapeutic approaches, Neurosci. Biobehav. Rev., 2017, vol. 83, pp. 589–603. https://doi.org/10.1016/j.neubiorev.2017.08.025

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L. and Jin, Y.P., Toxic effects of combined treatment of 1,2-dichloroethane and ethanol on mouse brain and the related mechanisms, J. Biochem. Mol. Toxicol., 2019. e22294. https://doi.org/10.1002/jbt.22294

    Article  Google Scholar 

  3. Fraguas, D., Díaz-Caneja, C.M., Ayora, M., et al., Oxidative stress and inflammation in first-episode psychosis: a systematic review and meta-analysis, Schizophr. Bull., 2018. https://doi.org/10.1093/schbul/sby125

    Article  Google Scholar 

  4. Kahn, R.S. and Sommer, I.E., The neurobiology and treatment of first-episode schizophrenia, Mol. Psychiatry, 2015, vol. 20, pp. 84–97. https://doi.org/10.1038/mp.2014.66

    Article  CAS  PubMed  Google Scholar 

  5. Leza, J.C., García-Bueno, B., Bioque, M., et al., Inflammation in schizophrenia: a question of balance, Neurosci. Biobehav. Rev., 2015, vol. 55, pp. 612–626. https://doi.org/10.1016/j.neubiorev.2015.05.014

    Article  PubMed  Google Scholar 

  6. Meyer, U., Schwarz, M.J., and Muller, N., Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond, Pharmacol. Ther., 2011, vol. 132, pp. 96–110. https://doi.org/10.1016/j.pharmthera.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  7. Flatow, J., Buckley, P., and Miller, B.J., Meta-analysis of oxidative stress in schizophrenia, Biol. Psychiatry, 2013, vol. 74, pp. 400–409. https://doi.org/10.1016/j.biopsych.2013.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller, B.J., Buckley, P., Seabolt, W., et al., Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects, Biol. Psychiatry, 2011, vol. 70, pp. 663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldsmith, D.R., Rapaport, M.H., and Miller, B.J., A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression, Mol. Psychiatry, 2016, vol. 21, pp. 1696–1709. https://doi.org/10.1038/mp.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capuzzi, E., Bartoli, F., Crocamo, C., et al., Acute variations of cytokine levels after antipsychotic treatment in drug-nagative subjects with a first-episode psychosis: a meta-analysis, Neurosci. Biobehav. Rev., 2017, vol. 77, pp. 122–128. https://doi.org/10.1016/j.neubiorev.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez, G.P., Song, J.B., Crouse, G.F., In vivo bypass of 8-oxodG, PLoS Genet., 2013, vol. 9, no. 8. e1003682. https://doi.org/10.1371/journal.pgen.1003682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ermakov, A.V., Konkova, M.S., Kostyuk, S.V., et al., Oxidized extracellular DNA as a stress signal in human cells, Oxid. Med. Cell Longev., 2013, vol. 2013, pp. 649–747. https://doi.org/10.1155/2013/649747

    Article  CAS  Google Scholar 

  13. Loseva, P., Kostyuk, S., Malinovskaya, E., et al., Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells, Expert Opin. Biol. Th., 2012, vol. 12, suppl. 1, pp. 85–97. https://doi.org/10.1517/14712598.2012.688948

    Article  CAS  Google Scholar 

  14. Ahmed, S.M., Luo, L., Namani, A., et al., Nrf2 signaling pathway: pivotal roles in inflammation, Biochim. Biophys. Acta Mol. Basis Dis., 2017, vol. 1863, no. 2, pp. 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Kensler, T.W. and Wakabayashi, N., Nrf2: friend or foe for chemoprevention?, Carcinogenesis, 2010, vol. 31, pp. 90–99. https://doi.org/10.1093/carcin/bgp231

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y., Zhu, Z., Zhang, T., and Zhou, Y., Ligustrazine attenuates inflammation and oxidative stress in a rat model of arthritis via the Sirt1/NF-κB and Nrf-2/HO-1 pathways, Arch. Pharm. Res., 2018. https://doi.org/10.1007/s12272-018-1089-0

    Article  Google Scholar 

  17. Tong, Y.K. and Lo, Y.M., Diagnostic developments involving cell-free (circulating) nucleic acids, Clin. Chim. Acta, 2006, vol. 363, pp. 187–196.

    Article  CAS  Google Scholar 

  18. Tsang, J.C. and Lo, Y.M., Circulating nucleic acids in plasma/serum, Pathology, 2007, vol. 39, pp. 197–207.

    Article  CAS  Google Scholar 

  19. Peters, D.L. and Pretorius, P.J., Origin, translocation and destination of extracellular occurring DNA—a new paradigm in genetic behavior, Clin. Chim. Acta, 2011, vol. 412, pp. 806–819. https://doi.org/10.1016/j.cca.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  20. Decker, P., Singh-Jasuja, H., Haager, S., et al., Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation, J. Immunol., 2005, vol. 174, pp. 3326–3334.

    Article  CAS  Google Scholar 

  21. Fenton, K.A. and Rekvig, O.P., A central role of nucleosomes in lupus nephritis, Ann. N.Y. Acad. Sci., 2007, vol. 1108, pp. 104–113.

    Article  CAS  Google Scholar 

  22. Lui, Y.Y., Chik, K.W., Chiu, R.W., et al., Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation, Clin. Chem., 2002, vol. 48, pp. 421–427.

    Article  CAS  Google Scholar 

  23. Hahn, S., Giaglis, S., Buser, A., et al., Laboratory cell-free nucleic acids in (maternal) blood: any relevance to (reproductive) immunologists?, J. Reprod. Immunol., 2014, vol. 104–105, pp. 26–31. https://doi.org/10.1016/j.jri.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  24. Nadeau-Vallée, M., Obari, D., Palacios, J., et al., Sterile inflammation and pregnancy complications: a review, Reproduction, 2016, vol. 152, pp. R277–R292.

    Article  Google Scholar 

  25. Bryan, H.K., Olayanju, A., Goldring, C.E., and Park, B.K., The Nrf2 cell defense pathway: Keap1-dependent and ‑independent mechanisms of regulation, Biochem. Pharmacol., 2013, vol. 85, pp. 705–717. https://doi.org/10.1016/j.bcp.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. and Xiang, Y., Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity, Biochem. J., 2016, vol. 473, pp. 961–1000. https://doi.org/10.1042/BJ20151182

    Article  CAS  PubMed  Google Scholar 

  27. O’Connell, M.A. and Hayes, J.D., The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic, Biochem. Soc. Trans., 2015, vol. 43, pp. 687–689. https://doi.org/10.1042/BST20150069

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 17-29-06017ofi_m, and within the framework of the state assignment of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Shmarina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in the study involving people comply with the ethical standards of the institutional and/or national research ethics committee and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed consent was obtained from each of the participants in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmarina, G.V., Orlova, M.D., Ershova, E.S. et al. NRF2 and HMOX1 Gene Expression against the Background of Systemic Oxidative Stress in Patients with Acute Psychosis. Russ J Genet 56, 96–102 (2020). https://doi.org/10.1134/S102279542001010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542001010X

Keywords:

Navigation