Skip to main content
Log in

‘Universal’ FitzGerald contractions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The model of a universe with a preferred frame, which nevertheless shares the main properties with traditional special and general relativity theories, is considered. We adopt Mach’s interpretation of inertia and show that the energy balance equation, which includes the Machian energy of gravitational interactions with the universe, can imitate standard relativistic formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. Phys. 17, 891 (1905)

    Article  Google Scholar 

  2. W.V. Ignatowsky, Phys. Z. 11, 972 (1910)

    Google Scholar 

  3. W.V. Ignatowsky, Arch. Math. Phys. 17, 1 (1911)

    Google Scholar 

  4. H.R. Brown, Physical Relativity (Clarendon, Oxford, 2005)

    Book  MATH  Google Scholar 

  5. D. Morin, Introduction to Classical Mechanics (Cambridge University Press, Cambridge, 2008)

    MATH  Google Scholar 

  6. Z.K. Silagadze, Acta Phys. Pol. B 39, 2943 (2008). arXiv:0708.0929 [physics.ed-ph]

    ADS  MathSciNet  Google Scholar 

  7. G.F. FitzGerald, Science 13, 390 (1889)

    Article  ADS  Google Scholar 

  8. J.P. Hsu, Einstein’s Relativity and Beyond (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  9. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)

    MATH  Google Scholar 

  10. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998). arXiv:quant-ph/9810080

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 81, 3563 (1998). arXiv:quant-ph/9806043

    Article  ADS  Google Scholar 

  12. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature 409, 791 (2001)

    Article  ADS  Google Scholar 

  13. R.A. Bertlmann, A. Zeilinger, J.S. Bell (eds.), Quantum [Un]Speakables: from Bell to Quantum Information (Springer, Berlin, 2002)

    Google Scholar 

  14. G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998). arXiv:astro-ph/9712103

    Article  ADS  Google Scholar 

  15. R. Jackiw, V.A. Kostelecky, Phys. Rev. Lett. 82, 3572 (1999). arXiv:hep-ph/9901358

    Article  ADS  Google Scholar 

  16. S. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999). arXiv:hep-ph/9812418

    Article  ADS  Google Scholar 

  17. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). arXiv:hep-th/0112090

    Article  ADS  Google Scholar 

  18. D. Sudarsky, L. Urrutia, H. Vucetich, Phys. Rev. Lett. 89, 231301 (2002). arXiv:gr-qc/0204027

    Article  ADS  Google Scholar 

  19. J.S. Bell, in Quantum Gravity, 1980 (Clarendon, Oxford, 1981)

    Google Scholar 

  20. P.H. Eberhard, Nuovo Cimento B 46, 392 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. P. Caban, J. Rembielinski, Phys. Rev. A 59, 4187 (1999). arXiv:quant-ph/9808013

    Article  ADS  Google Scholar 

  23. V. Scarani, W. Tittel, H. Zbinden, N. Gisin, Phys. Lett. A 276, 1 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. K.A. Milton, J. Phys., Conf. Ser. 161, 012001 (2009). arXiv:0809.2564 [hep-th]

    Article  ADS  Google Scholar 

  25. L. de Broglie, in Electrons et Photons: Rapports et Discussions du Cinquiéme Conseil de Physique, ed. by J. Bordet et al. (Gauthier-Villars, Paris, 1928)

    Google Scholar 

  26. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Valentini, Phys. Lett. A 228, 215 (1997). arXiv:0812.4941 [quant-ph]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. E. Mach, The Science of Mechanics—a Critical and Historical Account of its Development (Open Court, La Salle, 1960)

    Google Scholar 

  29. J. Barbour, H. Pfister, Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Einstein Studies, vol. 6 (Birkhäuser, Boston, 1995)

    MATH  Google Scholar 

  30. A. Ghosh, Origin of Inertia (Apeiron, Montreal, 2000)

    Google Scholar 

  31. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  32. J. Barbour, Class. Quantum Gravity 20, 1543 (2003). arXiv:gr-qc/0211021

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. M. Gogberashvili, Eur. Phys. J. C 54, 671 (2008). arXiv:0707.4308 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D.W. Sciama, Mon. Not. R. Astron. Soc. 113, 34 (1953)

    MATH  ADS  MathSciNet  Google Scholar 

  35. D.W. Sciama, Sci. Am. 196, 99 (1957)

    Article  Google Scholar 

  36. D.W. Sciama, The Physical Foundations of General Relativity (Doubleday, New York, 1969)

    Google Scholar 

  37. D.W. Sciama, Modern Cosmology (Cambridge University Press, London, 1971)

    Google Scholar 

  38. I.R. Kenyon, General Relativity (Oxford University Press, Oxford, 1990)

    Google Scholar 

  39. E. Schrödinger, Ann. Phys. 77, 325 (1925)

    Article  Google Scholar 

  40. S. Schlamminger, K.Y. Choi, T.A. Wagner, J.H. Gundlach, E.G. Adelberger, Phys. Rev. Lett. 100, 041101 (2008). arXiv:0712.0607 [gr-qc]

    Article  ADS  Google Scholar 

  41. J.-M. Lévy-Leblond, in GROUP 24: Physical and Mathematical Aspects of Symmetries, ed. by J.-P. Gazeau et al. Institute of Physics Conference Series, vol. 173 (IOP Publishing, Bristol, 2004)

    Google Scholar 

  42. W.C. Davidon, Found. Phys. 5, 525 (1975)

    Article  ADS  Google Scholar 

  43. S. Sonego, M. Pin, Eur. J. Phys. 26, 33 (2005). arXiv:physics/0402024

    Article  MATH  MathSciNet  Google Scholar 

  44. A.K.T. Assis, Weber’s Electrodynamics (Kluwer, Dordrecht, 1994)

    Google Scholar 

  45. A.K.T. Assis, Relational Mechanics (Apeiron, Montreal, 1999)

    Google Scholar 

  46. A.K.T. Assis, Ann. Fond. Broglie 27, 149 (2002)

    Google Scholar 

  47. C.M. Will, Phys. Rev. D 45, 403 (1992)

    Article  ADS  Google Scholar 

  48. C.M. Will, Living Rev. Relativ. 9(3) (2006). arXiv:gr-qc/0510072

  49. P. Hor̃ava, J. High Energy Phys. 03, 020 (2009). arXiv:0812.4287 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Hor̃ava, Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  51. P. Hor̃ava, Phys. Rev. Lett. 102, 161301 (2009). arXiv:0902.3657 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogberashvili, M. ‘Universal’ FitzGerald contractions. Eur. Phys. J. C 63, 317–322 (2009). https://doi.org/10.1140/epjc/s10052-009-1108-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1108-x

PACS

Navigation