Skip to main content
Log in

Standard model with partial gauge invariance

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang–Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu–Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu–Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.A.M. Dirac, Proc. R. Soc. A 209, 292 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  2. J.D. Bjorken, Ann. Phys. (N.Y.) 24, 174 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Eguchi, Phys. Rev. D 14, 2755 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Terazava, Y. Chikashige, K. Akama, Phys. Rev. D 15, 480 (1977)

    Article  ADS  Google Scholar 

  5. M. Suzuki, Phys. Rev. D 37, 210 (1988)

    Article  ADS  Google Scholar 

  6. V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  7. J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen, Phys. Rev. Lett. 87, 091601 (2001)

    Article  ADS  Google Scholar 

  8. J.D. Bjorken, arXiv:hep-th/0111196

  9. A. Jenkins, Phys. Rev. D 69, 105007 (2004)

    ADS  Google Scholar 

  10. V.A. Kostelecky, Phys. Rev. D 69, 105009 (2004)

    ADS  Google Scholar 

  11. S. Chadha, H.B. Nielsen, Nucl. Phys. B 217, 125 (1983)

    Article  ADS  Google Scholar 

  12. S.M. Carroll, G.B. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990)

    ADS  Google Scholar 

  13. D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997)

    ADS  Google Scholar 

  14. D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  15. V.A. Kostelecky, R. Lehnert, Phys. Rev. D 63, 065008 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Coleman, S.L. Glashow, Phys. Lett. B 405, 249 (1997)

    Article  ADS  Google Scholar 

  17. S. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999)

    Article  ADS  Google Scholar 

  18. S.R. Bluhm, V.A. Kostelecky, Phys. Rev. D 71, 065008 (2005)

    Article  ADS  Google Scholar 

  19. J.L. Chkareuli, J.G. Jejelava, Phys. Lett. B 659, 754 (2008)

    Article  ADS  Google Scholar 

  20. B.M. Gripaios, J. High Energy Phys. 0410, 069 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. J.L. Chkareuli, A. Kobakhidze, R.R. Volkas, Phys. Rev. D 80, 065008 (2009)

    Article  ADS  Google Scholar 

  22. M.D. Seifert, Phys. Rev. D 82, 125015 (2010)

    Article  ADS  Google Scholar 

  23. P. Kraus, E.T. Tomboulis, Phys. Rev. D 66, 045015 (2002)

    Article  ADS  Google Scholar 

  24. Y. Nambu, Progr. Theor. Phys. Suppl. Extra 190 (1968)

  25. J.L. Chkareuli, C.D. Froggatt, R.N. Mohapatra, H.B. Nielsen, arXiv:hep-th/0412225

  26. A.T. Azatov, J.L. Chkareuli, Phys. Rev. D 73, 065026 (2006)

    Article  ADS  Google Scholar 

  27. J.L. Chkareuli, Z.R. Kepuladze, Phys. Lett. B 644, 212 (2007)

    ADS  Google Scholar 

  28. S. Weinberg, The Quantum Theory of Fields, vol. 2 (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  29. R.N. Mohapatra, Unification and Supersymmetry (Springer, Berlin, 1986)

    Google Scholar 

  30. P. Ramond, arXiv:hep-ph/9809459

  31. J.L. Chkareuli, JETP Lett. 32, 671 (1980)

    ADS  Google Scholar 

  32. Z.G. Berezhiani, Phys. Lett. B 150, 177 (1985)

    Article  ADS  Google Scholar 

  33. J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 626, 307 (2002)

    Article  ADS  Google Scholar 

  34. C. Dams, R. Kleiss, Eur. Phys. J. C 34, 419 (2004)

    Article  ADS  Google Scholar 

  35. K. Greizen, Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  36. G.T. Zatsepin, V.A. Kuz’min, JETP Lett. 41, 78 (1966)

    Google Scholar 

  37. Fly’s eye Collab., Astrophys. J. 424, 144 (1995)

    Google Scholar 

  38. AGASA Collab., Phys. Rev. Lett. 81, 1163 (1998)

    Article  Google Scholar 

  39. AGASA Collab., Astropart. Phys. 19, 447 (2003)

    Article  Google Scholar 

  40. Pierre Auger Collab., Astropart. Phys. 29, 243 (2008)

    Article  ADS  Google Scholar 

  41. Pierre Auger Collab., Phys. Lett. B 685, 239 (2010)

    Article  ADS  Google Scholar 

  42. H. Fritzsch, Z.-Z. Xing, Prog. Part. Nucl. Phys. 45, 1 (2000)

    Article  ADS  Google Scholar 

  43. J.L. Chkareuli, C.D. Froggatt, Phys. Lett. B 450, 158 (1999)

    Article  ADS  Google Scholar 

  44. J.L. Chkareuli, J.G. Jejelava, G. Tatishvili, Phys. Lett. B 696, 124 (2011)

    Article  ADS  Google Scholar 

  45. J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 848, 498 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. N. Arkani-Hamed, H.-C. Cheng, M. Luty, J. Thaler, J. High Energy Phys. 0507, 029 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  47. J. Alfaro, L.F. Urrutia, Phys. Rev. D 81, 025007 (2010)

    Article  ADS  Google Scholar 

  48. J.L. Chkareuli, C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 609, 46 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. J.L. Chkareuli, Z. Kepuladze, G. Tatishvili, Eur. Phys. J. C 55, 309 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Chkareuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chkareuli, J.L., Kepuladze, Z. Standard model with partial gauge invariance. Eur. Phys. J. C 72, 1954 (2012). https://doi.org/10.1140/epjc/s10052-012-1954-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1954-9

Keywords

Navigation