Skip to main content
Log in

Spherical and cylindrical conductive thermal diodes based on VO2

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We theoretically and comparatively study the performance of spherical and cylindrical conductive thermal diodes operating with a phase-change material, whose thermal conductivity significantly changes in a narrow interval of temperatures. Simple analytical expressions are derived for the temperature profiles, heat flows and optimal rectification factors of both diodes. It is shown that the diode geometry has a strong impact on the temperatures and heat flows, but not so much on the diode rectification factor. Optimal rectification factors of 20.8% and 20.7% are obtained for the spherical and cylindrical diodes operating with a temperature difference of 376−300 = 76 K and 376.5-300 = 76.5 K between the terminals of VO2 and a phase invariant material, respectively. These similar rectification factors could be enhanced with a material thermal conductivity exhibiting a higher contrast than that of VO2 . The obtained results can thus be useful to guide the development of phase-change materials able to optimize the rectification of conductive thermal diodes with different geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.A. Roberts, D. Walker, Int. J. Therm. Sci. 50, 648 (2011)

    Article  Google Scholar 

  2. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  3. B. Hu, D. He, L. Yang, Y. Zhang, Phys. Rev. E 74, 060101 (2006)

    Article  ADS  Google Scholar 

  4. E. Pereira, Phys. Rev. E 83, 031106 (2011)

    Article  ADS  Google Scholar 

  5. G. Zhang, Y.-W. Zhang, Chin. Phys. B 26, 034401 (2017)

    Article  ADS  Google Scholar 

  6. K. Garcia-Garcia, J. Alvarez-Quintana, Int. J. Therm. Sci. 81, 76 (2014)

    Article  Google Scholar 

  7. G. Zhang, H. Zhang, Nanoscale 3, 4604 (2011)

    Article  ADS  Google Scholar 

  8. D. Segal, Phys. Rev. Lett. 100, 105901 (2008)

    Article  ADS  Google Scholar 

  9. K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, D.D.S. Meneses, Opt. Express 23, A1388 (2015)

    Article  Google Scholar 

  10. J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, K. Joulain, Phys. Rev. Appl. 6, 054003 (2016)

    Article  ADS  Google Scholar 

  11. P. Ben-Abdallah, S.-A. Biehs, Appl. Phys. Lett. 103, 191907 (2013)

    Article  ADS  Google Scholar 

  12. E. Nefzaoui, J. Drevillon, Y. Ezzahri, K. Joulain, Appl. Opt. 53, 3479 (2014)

    Article  ADS  Google Scholar 

  13. L.-A. Wu, D. Segal, Phys. Rev. Lett. 102, 095503 (2009)

    Article  ADS  Google Scholar 

  14. J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)

    Article  ADS  Google Scholar 

  15. D. Sawaki, W. Kobayashi, Y. Moritomo, I. Terasaki, Appl. Phys. Lett. 98, 081915 (2011)

    Article  ADS  Google Scholar 

  16. C. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  17. W. Kobayashi, Y. Teraoka, I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009)

    Article  ADS  Google Scholar 

  18. P. Van Zwol, L. Ranno, J. Chevrier, Phys. Rev. Lett. 108, 234301 (2012)

    Article  ADS  Google Scholar 

  19. Y. Yang, S. Basu, L. Wang, Appl. Phys. Lett. 103, 163101 (2013)

    Article  ADS  Google Scholar 

  20. R. Scheibner, M. König, D. Reuter, A. Wieck, C. Gould, H. Buhmann, L. Molenkamp, New J. Phys. 10, 083016 (2008)

    Article  ADS  Google Scholar 

  21. K. Joulain, Y. Ezzahri, J. Drevillon, P. Ben-Abdallah, Appl. Phys. Lett. 106, 133505 (2015)

    Article  ADS  Google Scholar 

  22. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.J. Urban, X. Zhang et al., Science 355, 371 (2017)

    Article  ADS  Google Scholar 

  23. M.M. Qazilbash, A. Schafgans, K. Burch, S. Yun, B. Chae, B. Kim, H.-T. Kim, D. Basov, Phys. Rev. B 77, 115121 (2008)

    Article  ADS  Google Scholar 

  24. J. Ordonez-Miranda, Y. Ezzahri, K. Joulain, J. Drevillon, J. Alvarado-Gil, Phys. Rev. B 98, 075144 (2018)

    Article  ADS  Google Scholar 

  25. H. Wang, X. Yi, S. Chen, X. Fu, Sens. Actuator A Phys. 122, 108 (2005)

    Article  Google Scholar 

  26. K. Ito, K. Nishikawa, H. Iizuka, H. Toshiyoshi, Appl. Phys. Lett. 105, 253503 (2014)

    Article  ADS  Google Scholar 

  27. K. Ito, K. Nishikawa, H. Iizuka, Appl. Phys. Lett. 108, 053507 (2016)

    Article  ADS  Google Scholar 

  28. P. Ben-Abdallah, AIP Adv. 7, 065002 (2017)

    Article  ADS  Google Scholar 

  29. M. Rini, Z. Hao, R. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. Kieffer, A. Fujimori, M. Onoda, S. Wall, Appl. Phys. Lett. 92, 181904 (2008)

    Article  ADS  Google Scholar 

  30. T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Cho, N.M. Jokerst et al., Appl. Phys. Lett. 93, 024101 (2008)

    Article  ADS  Google Scholar 

  31. J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, K. Joulain, J. Appl. Phys. 119, 203105 (2016)

    Article  ADS  Google Scholar 

  32. M.M. Qazilbash, Z. Li, V. Podzorov, M. Brehm, F. Keilmann, B. Chae, H.-T. Kim, D. Basov, Appl. Phys. Lett. 92, 241906 (2008)

    Article  ADS  Google Scholar 

  33. M. Peyrard, Europhys. Lett. 76, 49 (2006)

    Article  ADS  Google Scholar 

  34. J. Ordonez-Miranda, J.M. Hill, K. Joulain, Y. Ezzahri, J. Drevillon, J. Appl. Phys. 123, 085102 (2018)

    Article  ADS  Google Scholar 

  35. H. Sadat, V. Le Dez, Mech. Res. Commun. 76, 48 (2016)

    Article  Google Scholar 

  36. J. Ordonez-Miranda, K. Joulain, D. De Sousa Meneses, Y. Ezzahri, J. Drevillon, J. Appl. Phys. 122, 093105 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Ordonez-Miranda.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olawale Kasali, S., Ordonez-Miranda, J. & Joulain, K. Spherical and cylindrical conductive thermal diodes based on VO2. Eur. Phys. J. Plus 134, 340 (2019). https://doi.org/10.1140/epjp/i2019-12782-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12782-y

Navigation