skip to main content
article

Multiple interacting liquids

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

The particle level set method has proven successful for the simulation of two separate regions (such as water and air, or fuel and products). In this paper, we propose a novel approach to extend this method to the simulation of as many regions as desired. The various regions can be liquids (or gases) of any type with differing viscosities, densities, viscoelastic properties, etc. We also propose techniques for simulating interactions between materials, whether it be simple surface tension forces or more complex chemical reactions with one material converting to another or two materials combining to form a third. We use a separate particle level set method for each region, and propose a novel projection algorithm that decodes the resulting vector of level set values providing a "dictionary" that translates between them and the standard single-valued level set representation. An additional difficulty occurs since discretization stencils (for interpolation, tracing semi-Lagrangian rays, etc.) cross region boundaries naively combining non-smooth or even discontinuous data. This has recently been addressed via ghost values, e.g. for fire or bubbles. We instead propose a new paradigm that allows one to incorporate physical jump conditions in data "on the fly," which is significantly more efficient for multiple regions especially at triple points or near boundaries with solids.

Skip Supplemental Material Section

Supplemental Material

p812-losasso-high.mov

mov

58.2 MB

p812-losasso-low.mov

mov

21.8 MB

References

  1. Carlson, M., Mucha, P., Van Horn, R., and Turk, G. 2002. Melting and flowing. In ACM SIGGRAPH Symp. on Comput. Anim., 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Comput. Graph. and Image Processing 57, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003--45144, ASME.Google ScholarGoogle Scholar
  6. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Feldman, B., O'Brien, J., and Klingner, B. 2005. Animating gases with hybrid meshes. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 904--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Comput. Graph. Int., 178--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gascuel, M.-P. 1993. An implicit formulation for precise contact modeling between flexible solids. In Proc. SIGGRAPH 93, 313--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 463--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915--919. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hong, J.-M. 2005. Visual Simulation of Fluids with Discontinuous State Variables. PhD thesis, Korea University.Google ScholarGoogle Scholar
  21. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ihm, I., Kang, B., and Cha, D. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Irving, G. 2007. PhD thesis, Stanford University.Google ScholarGoogle Scholar
  24. Kang, M., Fedkiw, R., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Comput. Graph. (Proc. of SIGGRAPH 90), vol. 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and GROSS, M. 2005. A unified lagrangian approach to solid-fluid animation. In Eurographics Symp. on Point-Based Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lamorlette, A., and Foster, N. 2002. Structural modeling of natural flames. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729--735. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006. Melting and burning solids into liquids and gases. IEEE Trans. on Vis. and Comput. Graph. 12, 3, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.), 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Melek, Z., and Keyser, J. 2005. Multi-representation interaction for physically based modeling. In ACM Symp. on Solid and Physical Modeling, 187--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Merriman, B., Bence, J., and Osher, S. 1994. Motion of multiple junctions: A level set approach. J. Comput. Phys. 112, 334--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Neff, M., and Fiume, E. 1999. A visual model for blast waves and fracture. In Proc. of Graph. Interface 1999, 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particlebased simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  38. Rasmussen, N., Nguyen, D., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 703--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ruuth, S. 1998. A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145, 166--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Smith, K., Solis, F., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries 4, 3, 263--276.Google ScholarGoogle ScholarCross RefCross Ref
  44. Stam, J., and Fiume, E. 1995. Depicting Fire and Other Gaseous Phenomena Using Diffusion Process. In Proc. of SIGGRAPH 1995, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 724--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vese, L., and Chan, T. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. of Comput. Vision 50, 3, 271--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wang, H., Mucha, P., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 921--929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yngve, G., O'Brien, J., and Hodgins, J. 2000. Animating explosions. In Proc. SIGGRAPH 2000, vol. 19, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965--971. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multiple interacting liquids

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 25, Issue 3
          July 2006
          742 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1141911
          Issue’s Table of Contents

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tog Volume 25, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader