skip to main content
10.1145/1186822.1073300acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Real-Time subspace integration for St. Venant-Kirchhoff deformable models

Published:01 July 2005Publication History

ABSTRACT

In this paper, we present an approach for fast subspace integration of reduced-coordinate nonlinear deformable models that is suitable for interactive applications in computer graphics and haptics. Our approach exploits dimensional model reduction to build reduced-coordinate deformable models for objects with complex geometry. We exploit the fact that model reduction on large deformation models with linear materials (as commonly used in graphics) result in internal force models that are simply cubic polynomials in reduced coordinates. Coefficients of these polynomials can be precomputed, for efficient runtime evaluation. This allows simulation of nonlinear dynamics using fast implicit Newmark subspace integrators, with subspace integration costs independent of geometric complexity. We present two useful approaches for generating low-dimensional subspace bases: modal derivatives and an interactive sketching technique. Mass-scaled principal component analysis (mass-PCA) is suggested for dimensionality reduction. Finally, several examples are given from computer animation to illustrate high performance, including force-feedback haptic rendering of a complicated object undergoing large deformations.

Skip Supplemental Material Section

Supplemental Material

pps070.mp4

mp4

36.7 MB

References

  1. Almroth. B. O., Stern, P., and Brogan. F. A. 1978. Automatic Choice of Global Shape Functions in Structural Analysis. AIAA Journal 16, 5, 525--528.Google ScholarGoogle ScholarCross RefCross Ref
  2. Baraff, D., and Witkin, A. 1992. Dynamic Simulation of Non-penetrating Flexible Bodies. Computer Graphics (Proc. of ACM SIGGRAPH 92) 26(2), 303--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D., and Witkin, A. 1998. Large Steps in Cloth Simulation. In Proc. of ACM SIGGRAPH 98, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Basdogan, C. 2001. Real-time Simulation of Dynamically Deformable Finite Element Models Using Modal Analysis and Spectral Lanczos Decomposition Methods. In Medicine Meets Virtual Reality (MMVR'2001), 46--52.Google ScholarGoogle Scholar
  5. Belytschko, T. 2001. Nonlinear Finite Elements for Continua and Structures. Wiley.Google ScholarGoogle Scholar
  6. Bonet, J., and Wood. R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.Google ScholarGoogle Scholar
  7. Bridson. R., Fedkiw, R. P. and Anderson, J. 2002. Robust Treatment of Collisions. Contact, and Friction for Cloth Animation. ACM Trans. on Graphics 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bro-Nielsen, M., and Cotin, S. 1996. Real-time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation. Comp. Graphics Forum 15, 3, 57--66.Google ScholarGoogle ScholarCross RefCross Ref
  9. Capell, S., Green. S., Curless. B., Duchamp, T., and Popović, Z. 2002. A Multiresolution Framework for Dynamic Deformations. In Proc. of the Symp. on Comp. Animation 2002, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive Skeleton-Driven Dynamic Deformations. ACM Trans. on Graphics 21, 3 (July), 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Choi, M. G., and Ko. H.-S. 2005. Modal Warping: Real-Time Simulation of Large Rotational Deformation and Manipulation. In IEEE Trans. on Vis. and Comp. Graphics, vol. 11, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cotin, S., Delingette, H., and Ayache, N. 1999. Realtime Elastic Deformations of Soft Tissues for Surgery Simulation. IEEE Trans. on Vis. and Comp. Graphics 5, 1, 62--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic Real-Time Deformations Using Space & Time Adaptive Sampling. In Proc. of ACM SIGGRAPH 2001, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Faloutsos, P., Van De Panne, M., and Terzopoulos, D. 1997. Dynamic Free-Form Deformations for Animation Synthesis. IEEE Trans. on Vis. and Comp. Graphics 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fung, Y. 1977. A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar
  16. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A Simple Frame-work for Adaptive Simulation. ACM Trans. on Graphics 21, 3 (July), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive Deformation Using Modal Analysis with Constraints. In Proc. of Graphics Interface.Google ScholarGoogle Scholar
  18. Holzapfel, G. A. 2000. Nonlinear Solid Mechanics. Wiley.Google ScholarGoogle Scholar
  19. Idelsohn, S. R., and Cardona. A. 1985. A Load-dependent Basis for Reduced Nonlinear Structural Dynamics. Computers and Structures 20, 1--3, 203--210.Google ScholarGoogle ScholarCross RefCross Ref
  20. Idelsohn, S. R., and Cardona, A. 1985. A Reduction Method for Nonlinear Structural Dynamic Analysis. Computer Methods in Applied Mechanics and Engineering 49, 253--279.Google ScholarGoogle ScholarCross RefCross Ref
  21. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible Finite Elements for Robust Simulation of Large Deformation. In Proc. of the Symp. on Comp. Animation 2004, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. James, D., and Fatahalian. K. 2003. Precomputing Interactive Dynamic Deformable Scenes. In Proc. of ACM SIGGRAPH 2003, ACM, 879--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. James, D. L., and Pai, D. K. 1999. Artdefo: Accurate Real Time Deformable Objects. In Proc. of ACM SIGGRAPH 99, vol. 33, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. James, D. L., and Pai. D. K. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation with Graphics Hardware. In Proc. of ACM SIGGRAPH 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. James, D. L., and Pai. D. K. 2004. BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models. ACM Trans. on Graphics 23, 3 (Aug.), 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. James, D. L., Barbič, J., and Twigg, C. D. 2004. Squashing Cubes: Automating Deformable Model Construction for Graphics. In Proc. of ACM SIGGRAPH Sketches and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. for Numerical Methods in Engineering 51, 479--504.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lumley, J. L. 1967. The structure of inhomogeneous turbulence. In Atmospheric turbulence and wave propagation, 166--178.Google ScholarGoogle Scholar
  29. Metaxas, D., and Terzopoulos, D. 1992. Dynamic Deformation of Solid Primitives with Constraints. Computer Graphics (Proc. of ACM SIGGRAPH 92) 26(2), 309--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M., and Gross. M. 2004. Interactive Virtual Materials. In Proc. of Graphics Interface 2004, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Müller, M., Dorsey. J., McMillian, L., Jagnow, R., and Cutler, B. 2002. Stable Real-Time Deformations. In Proc. of the Symp. on Comp. Animation 2002, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Müller, M., Teschner, M., and Gross, M. 2004. Physically-Based Simulation of Objects Represented by Surface Meshes. In Proc. of Comp. Graphics Int. (CGI), 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nickell, R. E. 1976. Nonlinear Dynamics by Mode Superposition. Computer Methods in Applied Mechanics and Engineering 7, 107--129.Google ScholarGoogle ScholarCross RefCross Ref
  34. O'BRIEN, J., AND HODGINS. J. 1999. Graphical Modeling and Animation of Brittle Fracture. In Proc. of ACM SIGGRAPH 99, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pai, D. 2002. Strands: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 3, 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  36. Pentland, A., and Williams, J. July 1989. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics (Proc. of ACM SIGGRAPH 89) 23, 3, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Picinbono, G., Delingette, H., and Ayache, N. 2001. Non-linear and anisotropic elastic soft tissue models for medical simulation. In IEEE Int. Conf. on Robotics and Automation 2001.Google ScholarGoogle Scholar
  38. Shabana, A. A. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer--Verlag, New York, NY.Google ScholarGoogle Scholar
  39. Shinya, M., and Fournier, A. 1992. Stochastic motion - Motion under the influence of wind. Comp. Graphics Forum, 119--128.Google ScholarGoogle Scholar
  40. Stam, J. 1997. Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible Structures. Comp. Graphics Forum 16(3).Google ScholarGoogle Scholar
  41. Terzopoulos, D., and Witkin, A. 1988. Physically Based Models with Rigid and Deformable Components. IEEE Comp. Graphics & Applications 8, 6, 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically Deformable Models. Computer Graphics (Proc. of ACM SIGGRAPH 87) 21(4), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wriggers, P. 2002. Computational Contact Mechanics. John Wiley & Sons, Ltd.Google ScholarGoogle Scholar
  44. Zhuang, Y., and Canny, J. 2000. Haptic Interaction with Global Deformations. In Proc. of the IEEE Int. Conf. on Robotics and Automation.Google ScholarGoogle Scholar

Index Terms

  1. Real-Time subspace integration for St. Venant-Kirchhoff deformable models

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '05: ACM SIGGRAPH 2005 Papers
            July 2005
            826 pages
            ISBN:9781450378253
            DOI:10.1145/1186822
            • Editor:
            • Markus Gross

            Copyright © 2005 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2005

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            SIGGRAPH '05 Paper Acceptance Rate98of461submissions,21%Overall Acceptance Rate1,757of8,301submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader