skip to main content
10.1145/2501988.2502020acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Tactile rendering of 3D features on touch surfaces

Published:08 October 2013Publication History

ABSTRACT

We present a tactile-rendering algorithm for simulating 3D geometric features, such as bumps, on touch screen surfaces. This is achieved by modulating friction forces between the user's finger and the touch screen, instead of physically moving the touch surface. We proposed that the percept of a 3D bump is created when local gradients of the rendered virtual surface are mapped to lateral friction forces. To validate this approach, we first establish a psychophysical model that relates the perceived friction force to the controlled voltage applied to the tactile feedback device. We then use this model to demonstrate that participants are three times more likely to prefer gradient force profiles than other commonly used rendering profiles. Finally, we present a generalized algorithm and conclude the paper with a set of applications using our tactile rendering technology.

Skip Supplemental Material Section

Supplemental Material

uist281.mp4

mp4

51.1 MB

References

  1. Bau, O. and Poupyrev, I. REVEL: tactile feedback technology for augmented reality. ACM Transactions on Graphics (TOG), 31, 4 (2012), 89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bau, O., Poupyrev, I., Israr, A. and Harrison, C. TeslaTouch: electrovibration for touch surfaces. In Proc. UIST '10, ACM (2010), 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brewster, S., Chohan, F. and Brown, L. Tactile feedback for mobile interactions. In Proc. CHI'07, ACM (2007), 159--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Casiez, G., Roussel, N., Vanbelleghem, R. and Giraud, F. Surfpad: riding towards targets on a squeeze film effect. In Proc. CHI'11, ACM (2011), 2491--2500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Geldard, F. A. Adventures in tactile literacy. American Psychologist, 12, 3 (1957), 115.Google ScholarGoogle ScholarCross RefCross Ref
  6. Gibson, J. J. Observations on active touch. Psychological review, 69, 6 (1962), 477--491.Google ScholarGoogle Scholar
  7. Gordon, I. E. and Morison, V. The haptic perception of curvature. Attention, Perception, & Psychophysics, 31, 5 (1982), 446--450.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hoggan, E. and Brewster, S. New parameters for tacton design. In Proc. CHI '07 Extended Abstract, ACM (2007), 2417--2422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Israr, A. and Poupyrev, I. Tactile brush: drawing on skin with a tactile grid display. In Proc. CHI'11, ACM (2011), 2019--2028. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lévesque, V., Oram, L. and MacLean, K. Exploring the Design Space of Programmable Friction for Scrolling Interactions. In Proc. IEEE Haptics Symposium (2012), 24--30.Google ScholarGoogle Scholar
  11. Lévesque, V., Oram, L., MacLean, K., Cockburn, A., Marchuk, N. D., Johnson, D., Colgate, J. E. and Peshkin, M. A. Enhancing physicality in touch interaction with programmable friction. In Proc. CHI'11, ACM (2011), 2481--2490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lederman, S. and Klatzky, R. Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71, 7 (2009), 1439--1459.Google ScholarGoogle Scholar
  13. Lederman, S. J. and Klatzky, R. L. Hand movements: a window into haptic object recognition. Cognitive psychology, 19, 3 (1987), 342--368.Google ScholarGoogle Scholar
  14. Lederman, S. J. and Klatzky, R. L. Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71, 7 (2009), 1439--1459.Google ScholarGoogle Scholar
  15. Lee, J. C., Dietz, P. H., Leigh, D., Yerazunis, W. S. and Hudson, S. E. Haptic pen: a tactile feedback stylus for touch screens. In Proc. UIST '04, ACM (2004), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. MacLean, K. E. Haptic interaction design for everyday interfaces. Reviews of Human Factors and Ergonomics, 4, 1 (2008), 149--194.Google ScholarGoogle ScholarCross RefCross Ref
  17. Minsky, M., Ming, O.-y., Steele, O., Frederick P. Brooks, J. and Behensky, M. Feeling and seeing: issues in force display. SIGGRAPH Comput. Graph., 24, 2 (1990), 235--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Oakley, I., McGee, M. R., Brewster, S. and Gray, P. Putting the feel in 'look and feel'. In Proc. CHI '00, ACM (2000), 415--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Poupyrev, I. and Maruyama, S. Tactile interfaces for small touch screens. In Proc. UIST '03 (2003), 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Poupyrev, I., Rekimoto, J. and Maruyama, S. TouchEngine: a tactile display for handheld devices. In Proc. CHI '02 Extended Abstract, ACM (2002), 644--645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Robles-De-La-Torre, G. and Hayward, V. Force can overcome object geometry in the perception of shape through active touch. Nature, 412, 6845 (2001), 445--448.Google ScholarGoogle ScholarCross RefCross Ref
  22. Romano, J. M. and Kuchenbecker, K. J. Creating Realistic Virtual Textures from Contact Acceleration Data. Haptics, IEEE Transactions on, 5, 2 (2012), 109--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rosenberg, L. B. Virtual fixtures: Perceptual tools for telerobotic manipulation. In Proc. Virtual Reality Annual International Symposium, 1993., 1993 IEEE (1993), 76--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Saga, S. and Deguchi, K. Lateral-Force-Based 2.5-Dimensional Tactile Display for Touch Screen. In Proc. IEEE Haptics Symposium (2012).Google ScholarGoogle ScholarCross RefCross Ref
  25. Salisbury, K., Brock, D., Massie, T., Swarup, N. and Zilles, C. Haptic rendering: programming touch interaction with virtual objects. In Proc. Proceedings of the 1995 Symposium on Interactive 3D graphics, ACM (1995), 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Srinivasan, M. and Basdogan, C. Haptics in virtual environments: Taxonomy, research status, and challenges. Computers & Graphics, 21, 4 (1997), 393--404.Google ScholarGoogle ScholarCross RefCross Ref
  27. Weiss, M., Wacharamanotham, C., Voelker, S. and Borchers, J. FingerFlux: near-surface haptic feedback on tabletops. In Proc. UIST '11, ACM (2011), 615--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wijekoon, D., Cecchinato, M., Hoggan, E. and Linjama, J. Electrostatic Modulated Friction as Tactile Feedback: Intensity Perception. In Proc. Eurohaptics Springer Berlin Heidelberg (2012), 613--624. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Winfield, L., Glassmire, J., Colgate, E. and Peshkin, M. T-PaD: Tactile Pattern Display through Variable Friction Reduction. In Proc.World Haptics (2007), 421--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yohanan, S. and MacLean, K. E. Design and assessment of the haptic creature's affect display. In Proc. HRI '11, ACM (2011), 473--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zwislocki, J. J. and Goodman, D. A. Absolute scaling of sensory magnitudes: A validation. Attention, Perception, & Psychophysics, 28, 1 (1980), 28--38.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Tactile rendering of 3D features on touch surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UIST '13: Proceedings of the 26th annual ACM symposium on User interface software and technology
          October 2013
          558 pages
          ISBN:9781450322683
          DOI:10.1145/2501988

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 October 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          UIST '13 Paper Acceptance Rate62of317submissions,20%Overall Acceptance Rate842of3,967submissions,21%

          Upcoming Conference

          UIST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader