skip to main content
research-article

Yarn-level simulation of woven cloth

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

The large-scale mechanical behavior of woven cloth is determined by the mechanical properties of the yarns, the weave pattern, and frictional contact between yarns. Using standard simulation methods for elastic rod models and yarn-yarn contact handling, the simulation of woven garments at realistic yarn densities is deemed intractable. This paper introduces an efficient solution for simulating woven cloth at the yarn level. Central to our solution is a novel discretization of interlaced yarns based on yarn crossings and yarn sliding, which allows modeling yarn-yarn contact implicitly, avoiding contact handling at yarn crossings altogether. Combined with models for internal yarn forces and inter-yarn frictional contact, as well as a massively parallel solver, we are able to simulate garments with hundreds of thousands of yarn crossings at practical frame-rates on a desktop machine, showing combinations of large-scale and fine-scale effects induced by yarn-level mechanics.

Skip Supplemental Material Section

Supplemental Material

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of ACM SIGGRAPH 98, 4354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bell, N., and Garland, M., 2012. Cusp: Generic parallel algorithms for sparse matrix and graph computations. Version 0.3.0.Google ScholarGoogle Scholar
  3. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:163:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berthouzoz, F., Garg, A., Kaufman, D. M., Grinspun, E., and Agrawala, M. 2013. Parsing sewing patterns into 3D garments. ACM Trans. Graph. 32, 4, 85:1--85:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boisse, P., Borr, M., Buet, K., and Cherouat, A. 1997. Finite element simulations of textile composite forming including the biaxial fabric behaviour. Composites Part B: Engineering 28, 4, 453--464.Google ScholarGoogle ScholarCross RefCross Ref
  6. Breen, D. E., House, D. H., and Wozny, M. J. 1994. Predicting the drape of woven cloth using interacting particles. In Proceedings of ACM SIGGRAPH 94, 365--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer animation 2003, 2836. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Casati, R., and Bertails-Descoubes, F. 2013. Super space clothoids. ACM Trans. Graph. 32, 4, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, Y., Lin, S., Zhong, H., Xu, Y.-Q., Guo, B., and Shum, H.-Y. 2003. Realistic rendering and animation of knitwear. IEEE Transactions on Visualization and Computer Graphics 9, 1 (Jan.), 43--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. 21, 3, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, 139:1--139:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. de Joya, J. M., Narain, R., O'Brien, J., Samii, A., and Zordan, V. Berkeley garment library. http://graphics.berkeley.edu/resources/GarmentLibrary/.Google ScholarGoogle Scholar
  13. Duan, Y., Keefe, M., Bogetti, T. A., and Powers, B. 2006. Finite element modeling of transverse impact on a ballistic fabric. International Journal of Mechanical Sciences 48, 1, 33--43.Google ScholarGoogle ScholarCross RefCross Ref
  14. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of Pacific Graphics 2003, 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3, 49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goldstein, H., Poole, C. P., and Safko, J. L. 2001. Classical Mechanics (3rd Edition), 3 ed. Addison-Wesley.Google ScholarGoogle Scholar
  17. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer animation 2003, 6267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM Trans. Graph. 28, 3, 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hearle, J. W. S., Grosberg, P., and Backer, S. 1969. Structural Mechanics of Fibers, Yarns, and Fabrics, vol. 1. JohnWiley & Sons Inc., New York.Google ScholarGoogle Scholar
  20. Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  21. Kaldor, J. M., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27, 3, 65:165:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, 105:1--105:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kawabata, S., Niwa, M., and Kawai, H. 1973. The finite-deformation theory of plain-weave fabrics part i: The biaxial-deformation theory. Journal of the Textile Institute 64, 1, 21--46.Google ScholarGoogle ScholarCross RefCross Ref
  24. King, M. J., Jearanaisilawong, P., and Socrate, S. 2005. A continuum constitutive model for the mechanical behavior of woven fabrics. International Journal of Solids and Structures 42, 13, 3867--3896.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lopez-Moreno, J., Cirio, G., Miraut, D., and Otaduy, M. A. 2014. GPU Visualization and Voxelization of Yarn-Level Cloth. Proceedings of the Spanish Computer Graphics Conference.Google ScholarGoogle Scholar
  26. McGlockton, M. A., Cox, B. N., and McMeeking, R. M. 2003. A binary model of textile composites: III high failure strain and work of fracture in 3D weaves. Journal of the Mechanics and Physics of Solids 51, 8, 1573--1600.Google ScholarGoogle ScholarCross RefCross Ref
  27. Metaaphanon, N., Bando, Y., Chen, B.-Y., and Nishita, T. 2009. Simulation of tearing cloth with frayed edges. Comput. Graph. Forum 7, 1837--1844.Google ScholarGoogle ScholarCross RefCross Ref
  28. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Comp. Graph. Forum 31, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM Trans. Graph. 32, 6, 212:1--212:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nadler, B., Papadopoulos, P., and Steigmann, D. J. 2006. Multiscale constitutive modeling and numerical simulation of fabric material. International Journal of Solids and Structures 43, 2, 206--221.Google ScholarGoogle ScholarCross RefCross Ref
  31. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ng, S.-P., Tse, P.-C., and Lau, K.-J. 1998. Numerical and experimental determination of in-plane elastic properties of 2/2 twill weave fabric composites. Composites Part B: Engineering 29, 6, 735--744.Google ScholarGoogle ScholarCross RefCross Ref
  33. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of ACM SIGGRAPH 99, 137146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Page, J., and Wang, J. 2000. Prediction of shear force and an analysis of yarn slippage for a plain-weave carbon fabric in a bias extension state. Composites Science and Technology 60, 7, 977--986.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using cosserat models. Comput. Graph. Forum 21, 3, 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  36. Parsons, E. M., Weerasooriya, T., Sarva, S., and Socrate, S. 2010. Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations. Journal of the Mechanics and Physics of Solids 58, 11, 1995--2021.Google ScholarGoogle ScholarCross RefCross Ref
  37. Parsons, E. M., King, M. J., and Socrate, S. 2013. Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact. Journal of the Mechanics and Physics of Solids 61, 1, 265--292.Google ScholarGoogle ScholarCross RefCross Ref
  38. Peirce, F. T. 1937. The geometry of cloth structure. Journal of the Textile Institute Transactions 28, 3, T45--T96.Google ScholarGoogle ScholarCross RefCross Ref
  39. Pfaff, T., Narain, R., de Joya, J. M., and O'Brien, J. F. 2014. Adaptive tearing and cracking of thin sheets. ACM Trans. Graph. 33, 4, 110:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In In Graphics Interface, 147--154.Google ScholarGoogle Scholar
  41. Reese, S. 2003. Anisotropic elastoplastic material behavior in fabric structures. In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 201--210.Google ScholarGoogle ScholarCross RefCross Ref
  42. Spillmann, J., and Teschner, M. 2007. CoRdE: cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 6372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Spillmann, J., and Teschner, M. 2009. Cosserat nets. IEEE Transactions on Visualization and Computer Graphics 15, 2, 325--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Large-scale dynamic simulation of highly constrained strands. ACM Trans. Graph. 30, 4, 39:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sullivan, J. M. 2008. Curves of finite total curvature. In Discrete Differential Geometry, A. I. Bobenko, J. M. Sullivan, P. Schröder, and G. M. Ziegler, Eds., vol. 38 of Oberwolfach Seminars. Birkhäuser, Basel, 137--161.Google ScholarGoogle Scholar
  46. Tang, M., Tong, R., Narain, R., Meng, C., and Manocha, D. 2013. A GPU-based streaming algorithm for high-resolution cloth simulation. Computer Graphics Forum 32, 7, 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  47. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of ACM SIGGRAPH 87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. 47--54.Google ScholarGoogle Scholar
  49. Volino, P., Courchesne, M., and Magnenat Thalmann, N. 1995. Versatile and efficient techniques for simulating cloth and other deformable objects. In Proceedings of ACM SIGGRAPH 95, 137--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4, 105:1--105:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, 71:1--71:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Xia, W., and Nadler, B. 2011. Three-scale modeling and numerical simulations of fabric materials. International Journal of Engineering Science 49, 3, 229--239.Google ScholarGoogle ScholarCross RefCross Ref
  53. Yamane, K., and Nakamura, Y. 2006. Stable penalty-based model of frictional contacts. In Proceedings of IEEE International Conference on Robotics and Automation 2006, 1904--1909.Google ScholarGoogle Scholar

Index Terms

  1. Yarn-level simulation of woven cloth

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 6
          November 2014
          704 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2661229
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 November 2014
          Published in tog Volume 33, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader