skip to main content
research-article

Fluid volume modeling from sparse multi-view images by appearance transfer

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We propose a method of three-dimensional (3D) modeling of volumetric fluid phenomena from sparse multi-view images (e.g., only a single-view input or a pair of front- and side-view inputs). The volume determined from such sparse inputs using previous methods appears blurry and unnatural with novel views; however, our method preserves the appearance of novel viewing angles by transferring the appearance information from input images to novel viewing angles. For appearance information, we use histograms of image intensities and steerable coefficients. We formulate the volume modeling as an energy minimization problem with statistical hard constraints, which is solved using an expectation maximization (EM)-like iterative algorithm. Our algorithm begins with a rough estimate of the initial volume modeled from the input images, followed by an iterative process whereby we first render the images of the current volume with novel viewing angles. Then, we modify the rendered images by transferring the appearance information from the input images, and we thereafter model the improved volume based on the modified images. We iterate these operations until the volume converges. We demonstrate our method successfully provides natural-looking volume sequences of fluids (i.e., fire, smoke, explosions, and a water splash) from sparse multi-view videos. To create production-ready fluid animations, we further propose a method of rendering and editing fluids using a commercially available fluid simulator.

Skip Supplemental Material Section

Supplemental Material

a93.mp4

mp4

25.5 MB

References

  1. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., and Seidel, H.-P. 2008. Time-resolved 3d capture of non-stationary gas flows. ACM Trans. Graph. 27, 5, 132:1--132:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bhat, K. S., Seitz, S. M., Hodgins, J. K., and Khosla, P. K. 2004. Flow-based video synthesis and editing. ACM Trans. Graph. 23, 3, 360--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R., and Müller-Fischer, M. 2007. Fluid simulation: Siggraph 2007 course notes. In ACM SIGGRAPH 2007 Courses, 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Debevec, P. 2001. Light probe image gallery. Available at http://www.pauldebevec.com/Probes/.Google ScholarGoogle Scholar
  5. Debevec, P. 2006. High-resolution light probe image gallery. Available at http://gl.ict.usc.edu/Data/HighResProbes/.Google ScholarGoogle Scholar
  6. Dong, Y., Lefebvre, S., Tong, X., and Drettakis, G. 2008. Lazy solid texture synthesis. In Proc. of EGSR '08, 1165--1174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gregson, J., Krimerman, M., Hullin, M. B., and Heidrich, W. 2012. Stochastic tomography and its applications in 3d imaging of mixing fluids. ACM Trans. Graph. 31, 4, 52:1--52:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gregson, J., Heide, F., Hullin, M. B., Rouf, M., and Heidrich, W. 2013. Stochastic deconvolution. In Proc. of CVPR 2013, 1043--1050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gregson, J., Ihrke, I., Thuerey, N., and Heidrich, W. 2014. From capture to simulation: Connecting forward and inverse problems in fluids. ACM Trans. Graph. 33, 4, 139:1--139:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gu, J., Nayar, S., Grinspun, E., Belhumeur, P., and Ramamoorthi, R. 2013. Compressive structured light for recovering inhomogeneous participating media. IEEE Trans. Pattern Anal. Mach. Intell. 35, 3, 555--566.Google ScholarGoogle Scholar
  11. Hasinoff, S. W., and Kutulakos, K. N. 2007. Photo-consistent reconstruction of semitransparent scenes by densitysheet decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 5, 870--885. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Trans. Graph. 24, 3, 812--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Heeger, D. J., and Bergen, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proc. of SIGGRAPH '95, 229--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ihrke, I., and Magnor, M. 2004. Image-based tomographic reconstruction of flames. In Proc. of SCA '04, 365--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jagnow, R., Dorsey, J., and Rushmeier, H. 2004. Stereological techniques for solid textures. ACM Trans. Graph. 23, 3, 329--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kak, A. C., and Slaney, M. 1988. Principles of computerized tomographic imaging. IEEE Press.Google ScholarGoogle Scholar
  17. Klehm, O., Ihrke, I., Seidel, H.-P., and Eisemann, E. 2013. Volume stylizer: Tomography-based volume painting. In Proc of I3D '13, 161--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26, 3, 2:1--2:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. ACM Trans. Graph. 24, 3, 795--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, C., Pickup, D., Saunders, T., Cosker, D., Marshall, D., Hall, P., and Willis, P. 2013. Water surface modeling from a single viewpoint video. IEEE Trans. Vis. Comput. Graphics 19, 7, 1242--1251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, Z., Hu, Y., and Qi, Y. 2011. Modeling of smoke from a single view. In Proc. of ICVRV '11, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ma, C., Wei, L.-Y., Lefebvre, S., and Tong, X. 2013. Dynamic element textures. ACM Trans. Graph. 32, 4, 90:1--90:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Portilla, J., and Simoncelli, E. P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 1, 49--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Qin, X., and Yang, Y.-H. 2007. Aura 3d textures. IEEE Trans. Vis. Comput. Graph. 13, 2, 379--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reche-Martinez, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23, 3, 720--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Takayama, K., Okabe, M., Ijiri, T., and Igarashi, T. 2008. Lapped solid textures: Filling a model with anisotropic textures. ACM Trans. Graph. 27, 3, 53:1--53:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. In Proc. of SCA '06, 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wei, L.-Y. 2002. Texture Synthesis by Fixed Neighborhood Searching. PhD thesis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wenger, S., Lorenz, D., and Magnor, M. 2013. Fast image-based modeling of astronomical nebulae. Comput. Graph. Forum 32, 7, 93--100.Google ScholarGoogle ScholarCross RefCross Ref
  30. Werlberger, M., Pock, T., and Bischof, H. 2010. Motion estimation with non-local total variation regularization. In Proc. of CVPR 2010, 2464--2471.Google ScholarGoogle Scholar
  31. Wexler, Y., Shechtman, E., and Irani, M. 2007. Space-time completion of video. IEEE Trans. Pattern Anal. Mach. Intell. 29, 3, 463--476. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fluid volume modeling from sparse multi-view images by appearance transfer

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 34, Issue 4
      August 2015
      1307 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2809654
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2015
      Published in tog Volume 34, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader