skip to main content
survey

Understanding the Limitations of Particle Swarm Algorithm for Dynamic Optimization Tasks: A Survey Towards the Singularity of PSO for Swarm Robotic Applications

Published:28 July 2016Publication History
Skip Abstract Section

Abstract

One of the most widely used biomimicry algorithms is the Particle Swarm Optimization (PSO). Since its introduction in 1995, it has caught the attention of both researchers and academicians as a way of solving various optimization problems, such as in the fields of engineering and medicine, to computer image processing and mission critical operations. PSO has been widely applied in the field of swarm robotics, however, the trend of creating a new variant PSO for each swarm robotic project is alarming. We investigate the basic properties of PSO algorithms relevant to the implementation of swarm robotics and characterize the limitations that promote this trend to manifest. Experiments were conducted to investigate the convergence properties of three PSO variants (original PSO, SPSO and APSO) and the global optimum and local optimal of these PSO algorithms were determined. We were able to validate the existence of premature convergence in these PSO variants by comparing 16 functions implemented alongside the PSO variant. This highlighted the fundamental flaws in most variant PSOs, and signifies the importance of developing a more generalized PSO algorithm to support the implementation of swarm robotics. This is critical in curbing the influx of custom PSO and theoretically addresses the fundamental flaws of the existing PSO algorithm.

References

  1. Nor Azlina Ab Aziz and Zuwairie Ibrahim. 2012. Asynchronous particle swarm optimization for swarm robotics. International Symposium on Robotics and Intelligent Sensors (IRIS 2012). Procedia Engineering 41 (2012) 951--957Google ScholarGoogle ScholarCross RefCross Ref
  2. Roberto Battiti and Mauro Brunato. 2010. Reactive search optimization: Learning while optimizing. Handbook of Metaheuristics. Vol. 146 of the series International Series in Operational Research and Management Science. Springer, 543--571.Google ScholarGoogle Scholar
  3. Gerardo Beni. 2004. From swarm intelligence to swarm robotics. In Proceedings of International Conference on Swarm Robotics. 1--9, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brian Birge. 2005. Particle swarm optimization toolbox (http://www.mathworks.com/matlabcentral/fileexchange/7506), MATLAB Central File Exchange. Retrieved Jan. 2, 2013.Google ScholarGoogle Scholar
  5. Yifan Cai and X. Yang Simon. 2016. A PSO-based approach with fuzzy obstacle avoidance for cooperative multi-robots in unknown environments. Int. J. Comp. Intel. Appl. International Journal of Computational Intelligence and Applications 15.01 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  6. Maurice Clerc. 2004. Semi-continuous challenge. Retrieved from http://clerc.maurice.free.fr/pso//Semi-continuous_challenge/Semi-continuous_challenge.htm.Google ScholarGoogle Scholar
  7. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2011a. A novel multi-robot exploration approach based on particle swarm optimization algorithms. In IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, Kyoto, Japan, (2011).Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2011b. Ensuring Ad Hoc connectivity in distributed search with Robotic Darwinian swarms. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR2011, Kyoto, Japan, 2011. 284--289.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2012a. Towards a further understanding of the robotic darwinian PSO. In Computational Intelligence and Decision Making - Trends and Applications, From Intelligent Systems, Control and Automation: Science and Engineering Bookseries, Springer Verlag, 17--26, (2012a).Google ScholarGoogle Scholar
  10. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2012b. Analysis and parameter adjustment of the rdpso - towards an understanding of robotic network dynamic partitioning based on darwin's theory. International Mathematical Forum, Hikari, Ltd., 7, 32, 1587--1601, (2012b).Google ScholarGoogle Scholar
  11. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2012c. Introducing the fractional order robotic darwinian PSO. In Proceedings of the 9th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences - ICNPAA’2012, Vienna, Austria, (2012c).Google ScholarGoogle Scholar
  12. S. Micael Couceiro, Rocha P. Rui, and Ferreira M. F. Nuno. 2013. Benchmark of swarm robotics distributed techniques in a search task. Robotics and Autonomous Systems (2013), http://dx.doi.org/10.1016/j.robot.2013.10.004 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kurt Derr and Milos Manic. 2009. Multi-robot, multi-target particle swarm optimization search in noisy wireless environments. In Proceedings of the 2nd Conference on Human System Interactions, Catania, Italy. 78--83, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Doctor, G. K. Venayagamoorthy, and V. G. Gudise. 2004. Optimal PSO for collective robotic search applications. In IEEE Congress on Evolutionary Computation 2004, 1390--1395.Google ScholarGoogle Scholar
  15. K. Easton and J. Burdick. 2005. A coverage algorithm for multi-robot boundary inspection. In Proceeding of the IEEE International Conference on Robotics and Automation, ICRA, Barcelona, Spain, 2005, 727--734.Google ScholarGoogle Scholar
  16. Peter Eberhard and Kai Sedlaczek. 2009. Using augmented lagrangian particle swarm optimization for constrained problems in engineering. Advanced Design of Mechanical Systems: From Analysis to Optimization CISM International Centre for Mechanical Sciences, 253--71, (2009).Google ScholarGoogle Scholar
  17. R. C. Eberhart and Yuhui Shi. 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the Congress on Evolutionary Computation. 1, 84--88, (2000).Google ScholarGoogle ScholarCross RefCross Ref
  18. R. C. Eberhart and Yuhui Shi. 2001. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 Congress on Evolutionary Computation, 2001, 1, 94--100. IEEE, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. Masehian Ellips and Davoud Sedighizadeh. 2010. A multi-objective PSO-based algorithm for robot path planning. IEEE Journal 465--470, (2010).Google ScholarGoogle Scholar
  20. P. Andries Engelbrecht. 2005. Fundamentals of computational swarm intelligence. Wiley 1st Edition (December 16, 2005). ISBN-10: 0470091916, 672 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Fikret Ercan and Li Xiang. 2011. Swarm robot flocking: An empirical study. Intelligent Robotics and Applications Lecture Notes in Computer Science (2011), 495--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Fritsch. 2009. Steuerung selbstorganisierender multi-roboter-system für dynamische Sammelaufgaben am Beispiel der Bekämpfung maritimer Ölverschmutzungen (in German). Doctoral thesis, University of Stuttgart, Germany, (2009).Google ScholarGoogle Scholar
  23. Zhi-Feng Hao, Guo Guang-Han, and Huang Han. 2007. A particle swarm optimization algorithm with differential evolution. In Proceedings of Sixth International Conference on Machine Learning and Cybernetics. 1031--1035, (2007).Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Adam Hayes, Martinoli Alcherio, and M. Goodman Rodney. 2003. Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica 2003, 21, 4, 427--441. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. James Hereford. 2006. A distributed particle swarm optimization algorithm for swarm robotic applications. In IEEE Congress on Evolutionary Computation 2006, 1678--1685.Google ScholarGoogle Scholar
  26. M. James Hereford and Michael Siebold. 2008. Multi-robot search using a physically embedded particle swarm optimization. Int. Journal of Comput. Intell. Res. 2008, 4, 2, 197--209.Google ScholarGoogle Scholar
  27. M. James Hereford, Siebold Michael, and Nichols Shannon. 2007. Using the particle swarm optimization algorithm for robotic search applications. In Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, USA. 53--59, (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. X. Hu and R. C. Eberhart. 2002. Multi-objective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’02), IEEE Service Center, Honolulu, Hawaii, USA. 2, 1677--1681, (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Jager and B. Nebel. 2002. Dynamic decentralized area partitioning for cooperative cleaning robots. In Proceeding of IEEE International Conference on Robotics and Automation, ICRA. Washington DC, USA, 2002, Page 3577--3582.Google ScholarGoogle Scholar
  30. W. Jatmiko, K. Sekiyama, and T. Fukuda. 2007. A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: Theory, simulation and measurement. IEEE Comput. Intell. Mag. 2007, 2, 2, 37--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xu Jun-Jie and Xin Zhan-Hong. 2005. An extended particle swarm optimizer. Proc. IEEE Symp. Parallel and Distributed (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. P. Nikolaos Kakalis and Ventikos Yiannis. 2008. Robotic swarm concept for efficient oil spill confrontation. Journal of Hazardous Materials 154, 1--3, 880--887, (2008).Google ScholarGoogle Scholar
  33. Dervis Karaboga and Bahriye Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Karaboga and S. Ökdem. 2004. A simple and global optimization algorithm for engineering problems: Differential evolution algorithm. Turkish Journal of Electrical Engineering 12, 1, 53--60.Google ScholarGoogle Scholar
  35. J. Karimi and S. H. Pourtakdoust. 2013. Optimal manoeuvre-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm. Aerospace Science and Technology Journal, Elsevier, 2012Google ScholarGoogle Scholar
  36. F. James Kennedy, C. Eberhart Russell, and Shi Yuhui. 2001. Swarm intelligence. Morgan Kaufmann Publishers, US, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. James Kennedy, C. Eberhart Russell, and Shi Yuhui. 2004. Swarm intelligence. Morgan Kaufmann Publishers, San Francisco, CA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. James Kennedy and C. Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, vol. 4, IEEE Press, Piscataway, NJ, 1995 pp. 1942--1948.Google ScholarGoogle ScholarCross RefCross Ref
  39. J. Kennedy and R. C. Eberhart. 1997. A discrete binary version of the particle swarm algorithm. Int. IEEE Conf. on Systems, Man, and Cyber, 5, 4104--4108, (1997).Google ScholarGoogle Scholar
  40. Byung-II Koh, Alan D. George, Raphael T. Haftka, and Benjamin J. Fregly. 2006. Parallel asynchronous particle swarm optimization. International Journal of Numerical Methods Engineering 67, 4, 578--595. DOI:10.1002/nme.1646Google ScholarGoogle ScholarCross RefCross Ref
  41. R. Mendes, J. Kennedy, and J. Neves. 2004. The fully informed particle swarm: Simpler, may be better. IEEE Transactions on Evolutionary Computation 8, 3, 204--210, (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yan Meng, Kazeem Olorundamilola, and C. Muller Juan. 2007. A hybrid ACO/PSO control algorithm for distributed swarm robots. IEEE International Symposium on Computational Intelligence in Robotics and Automation Conference, (2007).Google ScholarGoogle Scholar
  43. Iñaki Navarro and Fernando Matía. 2013. An introduction to swarm robotics. Hindawi Publishing Corporation ISRN Robotics, 2013, Article ID 608164, 1--10, (2013).Google ScholarGoogle ScholarCross RefCross Ref
  44. Bijaya Ketan Panigrahi, Shi Yuhui, and Lim Meng-Hiot. 2011. Handbook of swarm intelligence: concepts, principles and applications. Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-17389-9, 119--132, 2011. Google ScholarGoogle ScholarCross RefCross Ref
  45. Jim Pugh and Martinoli Alcherio. 2007. Inspiring and modeling multi-robot search with particle swarm optimization. In IEEE Swarm Intelligence Symposium 2007, Honolulu, USA. 332--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Jim Pugh, Segapelli Loïc, and Martinoli Alcherio. 2006. Applying aspects of multi robot search to particle swarm optimization. In Proceedings of the 5th International Workshop on ant Colony Optimization and Swarm Intelligence, Brussels, Belgium. 506--507, (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yuan-Qing Qin, De-Bao Sun, Ning Li, and Yi-Gang Cen. 2004. Path planning for mobile robot using the particle swarm optimization with mutation operator. In Proceedings of IEEE International Conference on Machine Learning and Cybernetics. 4, 2473--2478.Google ScholarGoogle Scholar
  48. Ashish Raj. 1994. Evolutionary optimization algorithms for non-linear systems. Thesis Submitted to the Department Electrical and Computer Engineering, Utah State University, Logan, Utah. 1994Google ScholarGoogle Scholar
  49. P. Raja and S. Pugazhenthi. 2009. Path planning for mobile robots in dynamic environments using particle swarm optimization. International Conference on Advances in Recent Technologies in Communication and Computing (ARTcom09). IEEE, 401--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ioannis Rekleitis, Gregory Dudek, and Evangelos Milios. 2001. Multi-robot collaboration for robust exploration. Annals of Mathematics and Artificial Intelligence 31, 1--4, 7--14, (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Samuel Rutishauser, Nikolaus Correll, and Alcherio Martinoli. 2009. Collaborative coverage using a swarm of networked miniature robots. Journal of Robotics and Autonomous Systems 57, 517--525, (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Martin Saska, Vojtěch Vonásek, and Libor Přeučil. 2013. Trajectory planning and control for airport snow sweeping by autonomous formations of ploughs. Journal of Intelligent & Robotic Systems, April, 1--23, (2013). DOI:10.1007/s10846-013-9829-3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y. Shi and R. Eberhart. 1998. A modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). 69--73. DOI:10.1109/ICEC.1998.699146Google ScholarGoogle Scholar
  54. Yuhui Shi and R. C. Eberhart. 2001. Fuzzy adaptive particle swarm optimization. Proc. IEEE / Conf. on Evolutionary Computing, (2001).Google ScholarGoogle Scholar
  55. M. Stefik. 1985. Vehicles: experiments in synthetic psychology v. braitenberg, (MIT, cambridge, MA, 1984); 152 pages,. Artificial Intelligence, 27.2, 246--248, (1985).Google ScholarGoogle ScholarCross RefCross Ref
  56. Jesus Suarez and Robin Murphy. 2011. A survey of animal foraging for directed, persistent search by rescue robotics. In Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics, Kyoto, Japan, 314--320, (2011).Google ScholarGoogle ScholarCross RefCross Ref
  57. Jun Sun, Lai Choi-Hong, and Wu Xiao-Jun. 2012. Particle swarm optimization: classical and quantum perspectives. CRC press, Taylor and Francis Group 2012. ISBN: 978-1-4398-3576-0, 60--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Qirong Tang and Peter Eberhard. 2011. A PSO-based algorithm designed for a swarm of mobile robots. Journal of Industrial Application. Struct Multidisc Optim. 44, 483--498, (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Y. Wang, I. P. Sillitoe, and D. J. Mulvaney. 2007. Mobile Robot Path Planning in Dynamic Environments. IEEE International Conference on Robotics and Automation Roma, Italy, 10--14.Google ScholarGoogle Scholar
  60. Li Wang, Yushu Liu Hongbin Deng, and Yuanqing Xu. 2006. Obstacle-avoidance path planning for soccer robots using particle Swarm Optimization. In IEEE International Conference on Robotics and Biomimetics. 1233--1238.Google ScholarGoogle ScholarCross RefCross Ref
  61. Yao Xin. 2004. Parallel problem solving from nature. 8th International Conference Berlin, 2004 Proceedings, Springer.Google ScholarGoogle Scholar
  62. Songdong Xue and Jianchao Zeng. 2009. Controlling swarm robots for target search in parallel and asynchronously. International Journal of Modelling, Identification and Control 8, 4, 353--360, (2009).Google ScholarGoogle ScholarCross RefCross Ref
  63. Songdong Xue, Zhang Jianhua, and Zeng Jianchao. 2009a. Parallel asynchronous control strategy for target search with swarm robots. Int J Bio-Inspired Comput (IJBIC) 1, 3, 151--163, (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yinghua Xue, Guohui Tian, and Bin Huang. 2009b. Optimal robot path planning based on danger degree map. IEEE International Conference on Automation and Logistics, 2009. ICAL’09. DOI: 10.1109/ICAL.2009.5262573, (2009).Google ScholarGoogle ScholarCross RefCross Ref
  65. Songdong Xue, Jin Li, Jianchao Zeng, Xiaojuan He, and Guoyou Zhang. 2011. Synchronous and asynchronous communication modes for swarm robotics search. In “mobile robots -- control architectures, bio-interfacing, navigation, multi robot motion planning and operator training”, J. Bedkowski, Editor, Intech, 2011.Google ScholarGoogle Scholar
  66. Songdong Xue, Zan Yunlong, Zeng Jianchao, Xue Zhibin, and Du Jing. 2012. Group decision making aided PSO-type swarm robotic search. International Symposium on Computer, Consumer and Control, IEEE 2012. 785--788. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yudong Zhang, Wu Lenan, and Wang Shuihua. 2013. UCAV path planning by fitness-scaling adaptive chaotic particle swarm optimization. Mathematical Problems in Engineering, 2013, Article ID 705238, 9 (2013).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Understanding the Limitations of Particle Swarm Algorithm for Dynamic Optimization Tasks: A Survey Towards the Singularity of PSO for Swarm Robotic Applications

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 49, Issue 1
      March 2017
      705 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2911992
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 July 2016
      • Accepted: 1 February 2016
      • Revised: 1 January 2016
      • Received: 1 October 2014
      Published in csur Volume 49, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • survey
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader