skip to main content
article

Stylization and abstraction of photographs

Published:01 July 2002Publication History
Skip Abstract Section

Abstract

Good information design depends on clarifying the meaningful structure in an image. We describe a computational approach to stylizing and abstracting photographs that explicitly responds to this design goal. Our system transforms images into a line-drawing style using bold edges and large regions of constant color. To do this, it represents images as a hierarchical structure of parts and boundaries computed using state-of-the-art computer vision. Our system identifies the meaningful elements of this structure using a model of human perception and a record of a user's eye movements in looking at the photo; the system renders a new image using transformations that preserve and highlight these visual elements. Our method thus represents a new alternative for non-photorealistic rendering both in its visual style, in its approach to visual form, and in its techniques for interaction.

References

  1. AGRAWALA, M., AND STOLTE, C. 2001. Rendering effective route maps: improving usability through generalization. In Proc. of ACM SIGGRAPH 2001, 241-249. Google ScholarGoogle Scholar
  2. AHUJA, N. 1996. A transform for multiscale image segmentation by integrated edge and region detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 18, 12, 1211-1235. Google ScholarGoogle Scholar
  3. BURT, P., AND ADELSON, E. 1983. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications 31, 4, 532-540.Google ScholarGoogle Scholar
  4. CAMPBELL, F., AND ROBSON, J. 1968. Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197, 551-566.Google ScholarGoogle Scholar
  5. CHRISTOUDIAS, C., GEORGESCU, B., AND MEER, P. 2002. Synergism in low level vision. In Proc. ICPR 2002. Google ScholarGoogle Scholar
  6. COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 5. Google ScholarGoogle Scholar
  7. CURTIS, C. 1999. Non-photorealistic animation. In ACM SIGGRAPH 1999 Course Notes #17 (Section 9).Google ScholarGoogle Scholar
  8. DEUSSEN, O., AND STROTHOTTE, T. 2000. Computer-generated pen-and-ink illustration of trees. In Proc. of ACM SIGGRAPH 2000, 13-18. Google ScholarGoogle Scholar
  9. DUCHOWSKI, A., AND VERTEGAAL, R. 2000. Eye-based interaction in graphical systems: Theory and practice. In ACM SIGGRAPH 2000 Course Notes #5.Google ScholarGoogle Scholar
  10. DUCHOWSKI, A. 2000. Acuity-matching resolution degradation through wavelet coefficient scaling. IEEE Trans. on Image Processing 9, 8 (Aug.), 1437-1440. Google ScholarGoogle Scholar
  11. DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU, F., AND DORSEY, J. 2001. Decoupling strokes and high-level attributes for interactive traditional drawing. In Proceedings of the 12th Eurographics Workshop on Rendering, 71-82. Google ScholarGoogle Scholar
  12. FINKELSTEIN, A., AND SALESIN, D. 1994. Multiresolution curves. In Proc. of ACM SIGGRAPH 94, 261-268. Google ScholarGoogle Scholar
  13. FOLEY, J., VAN DAM, A., FEINER, S., AND HUGHES, J. 1997. Computer Graphics: Principles and Practice, 2nd edition. Addison Wesley. Google ScholarGoogle Scholar
  14. GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K Peters. Google ScholarGoogle Scholar
  15. GOOCH, A. A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-photorealistic lighting model for automatic technical illustration. In Proc. of ACM SIGGRAPH 98, 447-452. Google ScholarGoogle Scholar
  16. HAEBERLI, P. 1990. Paint by numbers: Abstract image representations. In Proc. of ACM SIGGRAPH 90, 207-214. Google ScholarGoogle Scholar
  17. HANDFORD, M. 1987. Where's Waldo? Little, Brown and Company.Google ScholarGoogle Scholar
  18. HENDERSON, J. M., AND HOLLINGWORTH, A. 1998. Eye movements during scene viewing: An overview. In Eye Guidance in Reading and Scene Perception, G. Underwood, Ed. Elsevier Science Ltd., 269-293.Google ScholarGoogle Scholar
  19. HERMAN, I., AND DUKE, D. 2001. Minimal graphics. IEEE Computer Graphics and Applications 21, 6, 18-21. Google ScholarGoogle Scholar
  20. HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In Proc. of ACM SIGGRAPH 2000, 517-526. Google ScholarGoogle Scholar
  21. HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In Proc. of ACM SIGGRAPH 98, 453-460. Google ScholarGoogle Scholar
  22. HERTZMANN, A. 2001. Paint by relaxation. In Computer Graphics International, 47-54. Google ScholarGoogle Scholar
  23. HOFFMAN, D. D. 1998. Visual intelligence: how we create what we see. Norton.Google ScholarGoogle Scholar
  24. JUST, M. A., AND CARPENTER, P. A. 1976. Eye fixations and cognitive processes. Cognitive Psychology 8, 441-480.Google ScholarGoogle Scholar
  25. KELLY, D. 1984. Retinal inhomogenity: I. spatiotemporal contrast sensitivity. Journal of the Optical Society of America A 74, 1, 107-113.Google ScholarGoogle Scholar
  26. KOENDERINK, J. J., M. A. BOUMAN, A. B. D. M., AND SLAPPENDEL, S. 1978. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. II. the far peripheral visual field (eccentricity 0-50). Journal of the Optical Society of America A 68, 6, 850-854.Google ScholarGoogle Scholar
  27. KOENDERINK, J. J. 1984. The structure of images. Biological Cybernetics 50, 363-370.Google ScholarGoogle Scholar
  28. KOENDERINK, J. J. 1984. What does the occluding contour tell us about solid shape? Perception 13, 321-330.Google ScholarGoogle Scholar
  29. KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999. Art-based rendering of fur, grass, and trees. In Proc. of ACM SIGGRAPH 99, 433-438. Google ScholarGoogle Scholar
  30. LEYTON, M. 1992. Symmetry, causality, mind. MIT Press.Google ScholarGoogle Scholar
  31. LINDEBERG, T. 1994. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers. Google ScholarGoogle Scholar
  32. LITWINOWICZ, P. 1997. Processing images and video for an impressionist effect. In Proc. of ACM SIGGRAPH 97, 407-414. Google ScholarGoogle Scholar
  33. MACKWORTH, N., AND MORANDI, A. 1967. The gaze selects informative details within pictures. Perception and Psychophysics 2, 547-552.Google ScholarGoogle Scholar
  34. MANNOS, J. L., AND SAKRISON, D. J. 1974. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. on Information Theory 20, 4, 525-536.Google ScholarGoogle Scholar
  35. MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic rendering. In Proc. of ACM SIGGRAPH 97, 415-420. Google ScholarGoogle Scholar
  36. MARR, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco. Google ScholarGoogle Scholar
  37. MEER, P., AND GEORGESCU, B. 2001. Edge detection with embedded confidence. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 12, 1351-1365. Google ScholarGoogle Scholar
  38. PATTANAIK, S. N., FERWERDA, J. A., FAIRCHILD, M. D., AND GREENBERG, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of ACM SIGGRAPH 98, 287-298. Google ScholarGoogle Scholar
  39. REDDY, M. 2001. Perceptually optimized 3D graphics. IEEE Computer Graphics and Applications 21, 5 (September/October), 68-75. Google ScholarGoogle Scholar
  40. REGAN, D. 2000. Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion and Binocular Disparity. Sinauer.Google ScholarGoogle Scholar
  41. ROVAMO, J., AND VIRSU, V. 1979. An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495-510.Google ScholarGoogle Scholar
  42. SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-D shapes. In Proc. of ACM SlGGRAPH 90, 197-206. Google ScholarGoogle Scholar
  43. SANTELLA, A., AND DECARLO, D. 2002. Abstracted painterly renderings using eye-tracking data. In Proc. of the Second International Symp. on Non-photorealistic Animation and Rendering (NPAR). Google ScholarGoogle Scholar
  44. SHIRAISHI, M., AND YAMAGUCHI, Y. 2000. An algorithm for automatic painterly rendering based on local source image approximation. In Proc. of the First International Symp. on Non-photorealistic Animation and Rendering (NPAR), 53-58. Google ScholarGoogle Scholar
  45. SIBERT, L. E., AND JACOB, R. J. K. 2000. Evaluation of eye gaze interaction. In Proc. CHI 2000, 281-288. Google ScholarGoogle Scholar
  46. TRUCCO, E., AND VERRI, A. 1998. Introductory Techniques for 3-D Computer Vision. Prentice-Hall. Google ScholarGoogle Scholar
  47. TUFTE, E. R. 1990. Envisioning Information. Graphics Press. Google ScholarGoogle Scholar
  48. VERTEGAAL, R. 1999. The gaze groupware system: Mediating joint attention in mutiparty communication and collaboration. In Proc. CHI '99, 294-301. Google ScholarGoogle Scholar
  49. WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-generated pen-and-ink illustration. In Proc. of ACM SIGGRAPH 94, 91-100. Google ScholarGoogle Scholar
  50. YARBUS, A. L. 1967. Eye Movements and Vision. Plenum Press.Google ScholarGoogle Scholar
  51. ZEKI, S. 1999. Inner Vision: An Exploration of Art and the Brain. Oxford Univ. Press.Google ScholarGoogle Scholar

Index Terms

  1. Stylization and abstraction of photographs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader