1932

Abstract

includes a group of genetically diverse species causing a range of diseases in animals and humans. The bacterium is frequently associated with two economically important and epidemiologically distinct reproductive diseases in ruminants: enzootic infectious infertility in cattle owing to subsp. and abortions in sheep, goats, and cattle. Septic abortion, usually epizootic in sheep, has been historically associated with subsp. and to a lesser extent with . However, there has been a dramatic species shift in the etiology of abortions in recent years: has now replaced subsp. as the predominant cause of sheep abortion in the United States, which appears to be driven primarily by clonal expansion of a hypervirulent tetracycline-resistant clone. Here we provide a review on the recent advances in understanding the pathobiology of infections in animals, with an emphasis on the diseases in ruminants, covering epidemiology, pathogenesis, genomics, and control measures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022516-022826
2017-02-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/animal/5/1/annurev-animal-022516-022826.html?itemId=/content/journals/10.1146/annurev-animal-022516-022826&mimeType=html&fmt=ahah

Literature Cited

  1. Vandamme P. 1.  2000. Taxonomy of the family Campylobacteraceae. Campylobacter ed. I Nachamkin, MJ Blaser 3–26 Washington, DC Am. Soc. Microbiol. Press [Google Scholar]
  2. On SL. 2.  2001. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. Appl. Microbiol. 90:1S–15S [Google Scholar]
  3. On SL. 3.  2013. Isolation, identification and subtyping of Campylobacter: Where to from here?. J. Microbiol. Methods 95:3–7 [Google Scholar]
  4. Penner JL. 4.  1988. The genus Campylobacter: a decade of progress. Clin. Microbiol. Rev. 1:157–72 [Google Scholar]
  5. Nachamkin I, Engberg J, Aarestrup FM. 5.  2000. Diagnosis and antimicrobial susceptibility of Campylobacter species. Campylobacter I Nachamkin, M Blaser 45–66 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  6. Lastovica AJ, Allos BM. 6.  2008. Clinical significance of Campylobacter and related species other than Campylobacter jejuni and Campylobacter coli. Campylobacter I Nachamkin, CM Szymanski, MJ Blaser 123–49 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  7. Kelly DJ. 7.  2001. The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori.. Appl. Microbiol. 90:16S–24S [Google Scholar]
  8. Muraoka WT, Zhang Q. 8.  2011. Phenotypic and genotypic evidence for l-fucose utilization by Campylobacter jejuni. J. Bacteriol. 193:1065–75 [Google Scholar]
  9. Stahl M, Friis LM, Nothaft H, Liu X, Li JJ. 9.  et al. 2011. l-Fucose utilization provides Campylobacter jejuni with a competitive advantage. PNAS 108:7194–99 [Google Scholar]
  10. Fernandez H, Vergara M, Tapia F. 10.  1985. Dessication resistance in thermotolerant Campylobacter species. Infection 13:197 [Google Scholar]
  11. Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D. 11.  et al. 2014. Incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006–2013. MMWR Morb. Mortal. Wkly. Rep. 63:328–32 [Google Scholar]
  12. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA. 12.  et al. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17:7–15 [Google Scholar]
  13. Golz G, Rosner B, Hofreuter D, Josenhans C, Kreienbrock L. 13.  et al. 2014. Relevance of Campylobacter to public health—the need for a One Health approach. Int. J. Med. Microbiol. 304:817–23 [Google Scholar]
  14. Friedman CR, Neimann J, Wegener HC, Tauxe RV. 14.  2000. Epidemiology of C. jejuni infections in the United States and other industrialized nations. Campylobacter I Nachamkin, MJ Blaser 121–38 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  15. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS. 15.  et al. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607–25 [Google Scholar]
  16. Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q. 16.  2015. Campylobacter in poultry: ecology and potential interventions. Avian Dis 59:185–200 [Google Scholar]
  17. Skarp CP, Hanninen ML, Rautelin HI. 17.  2016. Campylobacteriosis: the role of poultry meat. Clin. Microbiol. Infect. 22:103–9 [Google Scholar]
  18. Skirrow MB. 18.  1994. Diseases due to Campylobacter, Helicobacter and related bacteria. J. Comp. Pathol. 111:113–49 [Google Scholar]
  19. Markey BK, Leonard FC, Archambault M, Cullinane A, Maguire D. 19.  2013. Campylobacter, Arcobacter, and Helicobacter species. Clinical Veterinary Microbiology335–43 Maryland Heights, MO: Mosby Elsevier [Google Scholar]
  20. Van Bergen MAP, Dingle KE, Maiden MCJ, Newell DG, van der Graaf-van Bloois L. 20.  et al. 2005. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J. Clin. Microbiol. 43:5888–98 [Google Scholar]
  21. Sahin O, Fitzgerald C, Stroika S, Zhao S, Sippy RJ. 21.  et al. 2012. Molecular evidence for zoonotic transmission of an emergent highly pathogenic Campylobacter jejuni clone in the United States. J. Clin. Microbiol. 50:680–87 [Google Scholar]
  22. Moeller RB Jr. 22.  2001. Causes of caprine abortion: diagnostic assessment of 211 cases (1991–1998). J. Vet. Diagn. Investig. 13:265–70 [Google Scholar]
  23. Stanley K, Jones K. 23.  2003. Cattle and sheep farms as reservoirs of Campylobacter. J. Appl. Microbiol. 94:Suppl.104S–13S [Google Scholar]
  24. Grogono-Thomas R, Dworkin J, Blaser MJ, Newell DG. 24.  2000. Roles of the surface layer proteins of Campylobacter fetus subsp. fetus in ovine abortion. Infect. Immun. 68:1687–91 [Google Scholar]
  25. Lazou T, Houf K, Soultos N, Dovas C, Iossifidou E. 25.  2014. Campylobacter in small ruminants at slaughter: prevalence, pulsotypes and antibiotic resistance. Int. J. Food Microbiol. 173:54–61 [Google Scholar]
  26. Tu ZC, Eisner W, Kreiswirth BN, Blaser MJ. 26.  2005. Genetic divergence of Campylobacter fetus strains of mammal and reptile origins. J. Clin. Microbiol. 43:3334–40 [Google Scholar]
  27. Garcia MM, Eaglesome MD, Riggs T. 27.  1983. Campylobacters important in veterinary medicine. Vet. Bull. 53:793–818 [Google Scholar]
  28. Fenwick SG, West DM, Hunter JE, Sargison ND, Ahmed F. 28.  et al. 2000. Campylobacter fetus fetus abortions in vaccinated ewes. N.Z. Vet. J. 48:155–57 [Google Scholar]
  29. Grogono-Thomas R, Blaser MJ, Ahmadi M, Newell DG. 29.  2003. Role of S-layer protein antigenic diversity in the immune responses of sheep experimentally challenged with Campylobacter fetus subsp. fetus Infect. Immun. 71:147–54 [Google Scholar]
  30. Mannering SA, West DM, Fenwick SG, Marchant RM, Perkins NR, O'Connell K. 30.  2004. Pulsed-field gel electrophoresis typing of Campylobacter fetus subsp. fetus isolated from sheep abortions in New Zealand. N.Z. Vet. J. 52:358–63 [Google Scholar]
  31. Kirkbride CA. 31.  1993. Diagnoses in 1,784 ovine abortions and stillbirths. J. Vet. Diagn. Investig. 5:398–402 [Google Scholar]
  32. van Engelen E, Luttikholt S, Peperkamp K, Vellema P, Van den Brom R. 32.  2014. Small ruminant abortions in The Netherlands during lambing season 2012–2013. Vet. Rec. 174:506 [Google Scholar]
  33. Menzies PI. 33.  2012. Vaccination programs for reproductive disorders of small ruminants. Anim. Reprod. Sci. 130:162–72 [Google Scholar]
  34. Sahin O, Plummer PJ, Jordan DM, Sulaj K, Pereira S. 34.  et al. 2008. Emergence of a tetracycline-resistant Campylobacter jejuni clone associated with outbreaks of ovine abortion in the United States. J. Clin. Microbiol. 46:1663–71 [Google Scholar]
  35. Diker KS, Istanbulluoglu E. 35.  1986. Ovine abortion associated with Campylobacter jejuni. Vet. Rec. 118:307 [Google Scholar]
  36. Larson DJ, Wesley IV, Hoffman LJ. 36.  1992. Use of oligodeoxynucleotide probes to verify Campylobacter jejuni as a cause of bovine abortion. J. Vet. Diagn. Investig. 4:348–51 [Google Scholar]
  37. Newell DG, Duim B, van Mourik A, Grogono-Thomas R, Wagenaar J. 37.  2000. Speciation, subspeciation and subtyping of Campylobacter spp. associated with bovine infertility and abortion. Cattle Practice 8:421–25 [Google Scholar]
  38. Gough JF. 38.  1987. Campylobacter jejuni: isolated from an aborted caprine fetus in Ontario. Can. Vet. J. 28:670 [Google Scholar]
  39. Hazlett MJ, McDowall R, Delay J, Stalker M, McEwen B. 39.  et al. 2013. A prospective study of sheep and goat abortion using real-time polymerase chain reaction and cut point estimation shows Coxiella burnetii and Chlamydophila abortus infection concurrently with other major pathogens. J. Vet. Diagn. Investig. 25:359–68 [Google Scholar]
  40. Anderson KL, Hamoud MM, Urbance JW, Rhoades HE, Bryner JH. 40.  1983. Isolation of Campylobacter jejuni from an aborted caprine fetus. J. Am. Vet. Med. Assoc. 183:90–92 [Google Scholar]
  41. Hum S. 41.  1987. Bovine abortion due to Campylobacter fetus. Aust. Vet. J. 64:319–20 [Google Scholar]
  42. Kirkbride CA. 42.  1993. Bacterial agents detected in a 10-year study of bovine abortions and stillbirths. J. Vet. Diagn. Investig. 5:64–68 [Google Scholar]
  43. Van Donkersgoed J, Janzen ED, Chirino-Trejo M, Berry C, Clark EG, Haines DM. 43.  1990. Campylobacter jejuni abortions in two beef cattle herds in Saskatchewan. Can. Vet. J. 31:373–77 [Google Scholar]
  44. 44. Anonymous 1979. The lamb drain. Surveillance 6:4–5 [Google Scholar]
  45. 45. Anonymous 2000. Biosecurity Authority animal health surveillance report 1999. Surveillance 27:22–23 [Google Scholar]
  46. Poland R. 46.  2004. Animal Disease Surveillance. NZ Ministry of Agric. Forest. Surveillance 31:9–11 [Google Scholar]
  47. Poland R. 47.  2006. Animal disease surveillance. Surveillance 33:1–12 [Google Scholar]
  48. Delong WJ, Jaworski MD, Ward AC. 48.  1996. Antigenic and restriction enzyme analysis of Campylobacter spp. associated with abortion in sheep. Am. J. Vet. Res. 57:163–67 [Google Scholar]
  49. 49. US Dep. Agric., Anim. Plant Health Inspect. Serv., Vet. Serv., Natl. Anim. Health Monit. Syst. 2003. Part II: reference of sheep health in the United States, 2001 Rep. #378.0403, USDA:APHIS:VS, CEAH, Fort Collins, CO
  50. Diker KS, Esendal OM, Akan M. 50.  2000. Epidemiology of ovine Campylobacter infection determined by numerical analysis of electrophoretic protein profiles. J. Vet. Med. B Infect. Dis. Vet. Public Health 47:739–43 [Google Scholar]
  51. Varga J, Mezes B, Fodor L, Hajtos I. 51.  1990. Serogroups of Campylobacter fetus and Campylobacter jejuni isolated in cases of ovine abortion. J. Vet. Med. B 37:148–52 [Google Scholar]
  52. Orr M. 52.  1991. Abortions of sheep in 1990. Surveillance 27:27–28 [Google Scholar]
  53. Skirrow MB. 53.  2006. John McFadyean and the centenary of the first isolation of Campylobacter species. Clin. Infect. Dis. 43:1213–17 [Google Scholar]
  54. Mannering SA, West DM, Fenwick SG, Marchant RM, O'Connell K. 54.  2006. Pulsed-field gel electrophoresis of Campylobacter jejuni sheep abortion isolates. Vet. Microbiol. 115:237–42 [Google Scholar]
  55. Wu Z, Sippy R, Sahin O, Plummer P, Vidal A. 55.  et al. 2014. Genetic diversity and antimicrobial susceptibility of Campylobacter jejuni isolates associated with sheep abortion in the United States and Great Britain. J. Clin. Microbiol. 52:1853–61 [Google Scholar]
  56. Mannering SA, Marchant RM, Middelberg A, Perkins NR, West DM, Fenwick SG. 56.  2003. Pulsed-field gel electrophoresis typing of Campylobacter fetus subsp. fetus from sheep abortions in the Hawke's Bay region of New Zealand. N.Z. Vet. J. 51:33–37 [Google Scholar]
  57. Agerholm JS, Aalbaek B, Fog-Larsen AM, Boye M, Holm E. 57.  et al. 2006. Veterinary and medical aspects of abortion in Danish sheep. APMIS 114:146–52 [Google Scholar]
  58. Hamali H, Fallah S, Joozani RJ, Zare P, Noorsaadat G. 58.  2014. Detection of Campylobacter spp. in sheep aborted fetuses by PCR. Trends Life Sci. 3:49–56 [Google Scholar]
  59. Menzies PI. 59.  2011. Control of important causes of infectious abortion in sheep and goats. Vet. Clin. N. Am. Food Anim. Pract. 27:81–93 [Google Scholar]
  60. Burrough ER, Sahin O, Plummer PJ, Zhang QJ, Yaeger MJ. 60.  2009. Pathogenicity of an emergent, ovine abortifacient Campylobacter jejuni clone orally inoculated into pregnant guinea pigs. Am. J. Vet. Res. 70:1269–76 [Google Scholar]
  61. Sultan Dosa AB, Bryner JH, Foley JW. 61.  1983. Pathogenicity of Campylobacter jejuni and Campylobacter coli strains in the pregnant guinea pig model. Am. J. Vet. Res. 44:2175–78 [Google Scholar]
  62. Bryner JH, Foley JW, Thompson K. 62.  1979. Comparative efficacy of ten commercial Campylobacter fetus vaccines in the pregnant guinea pig: challenge with Campylobacter fetus serotype A. Am. J. Vet. Res. 40:433–35 [Google Scholar]
  63. Taylor DE, Bryner JH. 63.  1984. Plasmid content and pathogenicity of Campylobacter jejuni and Campylobacter coli strains in the pregnant guinea pig model. Am. J. Vet. Res. 45:2201–2 [Google Scholar]
  64. Milnes AS, Stewart I, Clifton-Hadley FA, Davies RH, Newell DG. 64.  et al. 2008. Intestinal carriage of verocytotoxigenic Escherichia coli O157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol. Infect. 136:739–51 [Google Scholar]
  65. Acik MN, Cetinkaya B. 65.  2006. Heterogeneity of Campylobacter jejuni and Campylobacter coli strains from healthy sheep. Vet. Microbiol. 115:370–75 [Google Scholar]
  66. Zweifel C, Zychowska MA, Stephan R. 66.  2004. Prevalence and characteristics of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. isolated from slaughtered sheep in Switzerland. Int. J. Food Microbiol. 92:45–53 [Google Scholar]
  67. Moeller RB. 67.  2012. Disorders of sheep and goats. Kirkbride's Diagnosis of Abortion and Neonatal Loss in Animals BL Njaa 49–87 Ames, IA: Wiley-Blackwell [Google Scholar]
  68. Sanad YM, Jung K, Kashoma I, Zhang X, Kassem II. 68.  et al. 2015. Insights into potential pathogenesis mechanisms associated with Campylobacter jejuni-induced abortion in ewes. BMC Vet. Res. 10:274 [Google Scholar]
  69. Bolton DJ. 69.  2015. Campylobacter virulence and survival factors. Food Microbiol 48:99–108 [Google Scholar]
  70. Blaser MJ, Newell DG, Thompson SA, Zechner EL. 70.  2008. Pathogenesis of Campylobacter fetus. Campylobacter ed. I Nachamkin, CM Szymanski, MJ Blaser 401–28 Washington, DC: Am. Soc. Microbiol. Press [Google Scholar]
  71. Thompson SA. 71.  2002. Campylobacter surface-layers (S-layers) and immune evasion. Ann. Periodontol. 7:43–53 [Google Scholar]
  72. Blaser MJ, Smith PF, Kohler PF. 72.  1985. Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J. Infect. Dis. 151:227–35 [Google Scholar]
  73. Blaser MJ, Smith PF, Hopkins JA, Heinzer I, Bryner JH, Wang WL. 73.  1987. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis. 155:696–706 [Google Scholar]
  74. Pei ZH, Blaser MJ. 74.  1990. Pathogenesis of Campylobacter fetus infections: role of surface array proteins in virulence in a mouse model. J. Clin. Investig. 85:1036–43 [Google Scholar]
  75. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C. 75.  et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–68 [Google Scholar]
  76. Wu Z, Sahin O, Terhorst S, Periaswamy B, Chen S. 76.  et al. 2015. Identification of two key factors associated with Campylobacter-induced abortion. Abstracts 102nd Annu. Meet. Conf. Res. Work. Anim. Dis., Chicago, IL
  77. Tang Y, Wu Z, Sahin O, Zhang Q. 77.  2015. In vivo role of typA in the virulence of Campylobacter-induced abortion. Abstracts 115th Gen. Meet. Am. Soc. Microbiol New Orleans, LA Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  78. Burrough ER, DiVerde KD, Sahin O, Plummer PJ, Zhang Q, Yaeger MJ. 78.  2011. Expression of Toll-like receptors 2 and 4 in subplacental trophoblasts from guinea pigs (Cavia porcellus) following infection with Campylobacter jejuni. Vet. Pathol. 48:381–88 [Google Scholar]
  79. Hedstrom OR, Sonn RJ, Lassen ED, Hultgren BD, Crisman RO. 79.  et al. 1987. Pathology of Campylobacter jejuni abortion in sheep. Vet. Pathol. 24:419–26 [Google Scholar]
  80. Kirkbride CA, Gates CE, Collins JE. 80.  1986. Abortion in sheep caused by a nonclassified, anaerobic, flagellated bacterium. Am. J. Vet. Res. 47:259–62 [Google Scholar]
  81. Campero CM, Anderson ML, Walker RL, Blanchard PC, Barbano L. 81.  et al. 2005. Immunohistochemical identification of Campylobacter fetus in natural cases of bovine and ovine abortions. J. Vet. Med. B Infect. Dis. Vet. Public Health 52:138–41 [Google Scholar]
  82. 82. World Organ. Anim. Health. 2008. Bovine genital campylobacteriosis. Manual of Diagnostic Tests and Vaccine for Terrestrial Animals. Paris: World Organ. Anim. Health [Google Scholar]
  83. Fitzgerald C, Tu ZC, Patrick M, Stiles T, Lawson AJ. 83.  et al. 2014. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. Int. J. Syst. Evol. Microbiol. 64:2944–48 [Google Scholar]
  84. Schulze F, Bagon A, Muller W, Hotzel H. 84.  2006. Identification of Campylobacter fetus subspecies by phenotypic differentiation and PCR. J. Clin. Microbiol. 44:2019–24 [Google Scholar]
  85. Barrett TJ, Patton CM, Morris GK. 85.  1988. Differentiation of Campylobacter species using phenotypic characterization. Lab. Med. 19:96–102 [Google Scholar]
  86. Meinershagen WA, Frank FW, Hulet CV, Price DA. 86.  1969. Immunity in ewes resulting from natural exposure to Vibrio fetus. Am. J. Vet. Res. 30:203–6 [Google Scholar]
  87. Miller VA, Jensen R. 87.  1961. Experimental immunization against ovine vibriosis. I. The use of live and formalin-killed Vibrio fetus vaccines. Am. J. Vet. Res. 22:43–46 [Google Scholar]
  88. Wu Z, Sahin O, Wang F, Zhang Q. 88.  2014. Proteomic identification of immunodominant membrane-related antigens in Campylobacter jejuni associated with sheep abortion. J. Proteom. 99:111–22 [Google Scholar]
  89. Williams CE, Renshaw HW, Meinershagen WA, Everson DO, Chamberlain RK. 89.  et al. 1976. Ovine campylobacterosis: preliminary studies of the efficacy of the in vitro serum bactericidal test as an assay for the potency of Campylobacter (Vibrio) fetus subsp intestinalis bacterins. Am. J. Vet. Res. 37:409–15 [Google Scholar]
  90. Diker KS, Turutoglu H. 90.  1995. Evaluation of immunogenicity of Campylobacter strains isolated from ovine abortions by laboratory test systems. J. Vet. Med. B 42:35–41 [Google Scholar]
  91. Burrough ER, Sahin O, Plummer PJ, DiVerde K, Zhang Q, Yaeger MJ. 91.  2010. Comparison of two commercial ovine Campylobacter vaccines and an experimental bacterin in a guinea pig model. Am. J. Vet. Res. 72:799–805 [Google Scholar]
  92. Miller VA, Jensen R, Ogg JE. 92.  1964. Immunization of sheep against ovine vibriosis with bacterins containing serotype I and serotype V in mineral oil. Am. J. Vet. Res. 25:664–67 [Google Scholar]
  93. Storz J, Miner ML, Marriott ME, Olson AE. 93.  1966. Prevention of ovine vibriosis by vaccination: duration of protective immunity. Am. J. Vet. Res. 27:110–14 [Google Scholar]
  94. Giguere S, Prescott JF, Baggot JD, Walker RD, Dowling PM. 94.  2013. Antimicrobial Therapy in Veterinary Medicine Ames, IA: Wiley-Blackwell
  95. BonDurant RH. 95.  2005. Venereal diseases of cattle: natural history, diagnosis, and the role of vaccines in their control. Vet. Clin. N. Am. Food Anim. Pract. 21:383–408 [Google Scholar]
  96. Mai HM, Irons PC, Kabir J, Thompson PN. 96.  2013. Prevalence of bovine genital campylobacteriosis and trichomonosis of bulls in northern Nigeria. Acta Vet. Scand. 55:56 [Google Scholar]
  97. Michi AN, Favetto PH, Kastelic J, Cobo ER. 97.  2016. A review of sexually transmitted bovine trichomoniasis and campylobacteriosis affecting cattle reproductive health. Theriogenology 85:781–91 [Google Scholar]
  98. Mshelia GD, Amin JD, Woldehiwet Z, Murray RD, Egwu GO. 98.  2010. Epidemiology of bovine venereal campylobacteriosis: geographic distribution and recent advances in molecular diagnostic techniques. Reprod. Domest. Anim. 45:e221–30 [Google Scholar]
  99. Chaban B, Guerra AG, Hendrick SH, Waldner CL, Hill JE. 99.  2013. Isolation rates of Campylobacter fetus subsp. venerealis from bovine preputial samples via passive filtration on nonselective medium versus selective medium, with and without transport medium. Am. J. Vet. Res. 74:1066–69 [Google Scholar]
  100. Yaeger MJ, Holler LD. 100.  2007. Bacterial causes of bovine infertility and abortion. Current Therapy in Large Animal Theriogenology RS Youngquist, WR Threlfall 389–99 St. Louis, MO: Saunders Elsevier [Google Scholar]
  101. Hoffer MA. 101.  1981. Bovine campylobacteriosis: a review. Can. Vet. J. 22:327–30 [Google Scholar]
  102. Dufty JH, Clark BL, Monsbourgh MJ. 102.  1975. The influence of age on the susceptibility of bulls to Campylobacter fetus subsp venerealis. Aust. Vet. J. 51:294–97 [Google Scholar]
  103. Truyers I, Luke T, Wilson D, Sargison N. 103.  2014. Diagnosis and management of venereal campylobacteriosis in beef cattle. BMC Vet. Res. 10:280 [Google Scholar]
  104. Clark BL. 104.  1971. Review of bovine vibriosis. Aust. Vet. J. 47:103–7 [Google Scholar]
  105. Cipolla AL, Casaro AP, Terzolo HR, Estela ES, Brooks BW, Garcia MM. 105.  1994. Persistence of Campylobacter fetus subspecies venerealis in experimentally infected heifers. Vet. Rec. 134:628 [Google Scholar]
  106. Cobo ER, Corbeil LB, BonDurant RH. 106.  2011. Immunity to infections in the lower genital tract of bulls. J. Reprod. Immunol. 89:55–61 [Google Scholar]
  107. García-Guerra A, Waldner CL, Pellegrino A, Macdonald N, Chaban B. 107.  et al. 2016. Effect of sample pooling and transport conditions on the clinical sensitivity of a real-time polymerase chain reaction assay for Campylobacter fetus subsp. venerealis in preputial samples from bulls. Can. J. Vet. Res. 80:32–39 [Google Scholar]
  108. Monke HJ, Love BC, Wittum TE, Monke DR, Byrum BA. 108.  2002. Effect of transport enrichment medium, transport time, and growth medium on the detection of Campylobacter fetus subsp venerealis. J. Vet. Diagn. Investig. 14:35–39 [Google Scholar]
  109. Waldner C, Hendrick S, Chaban B, Guerra AG, Griffin G. 109.  et al. 2013. Application of a new diagnostic approach to a bovine genital campylobacteriosis outbreak in a Saskatchewan beef herd. Can. Vet. J. 54:373–76 [Google Scholar]
  110. McMillen L, Fordyce G, Doogan VJ, Lew AE. 110.  2006. Comparison of culture and a novel 5′ Taq nuclease assay for direct detection of Campylobacter fetus subsp. venerealis in clinical specimens from cattle. J. Clin. Microbiol. 44:938–45 [Google Scholar]
  111. Schmidt T, Venter EH, Picard JA. 111.  2010. Evaluation of PCR assays for the detection of Campylobacter fetus in bovine preputial scrapings and the identification of subspecies in South African field isolates. J. S. Afr. Vet. Assoc. 81:87–92 [Google Scholar]
  112. Morrell EL, Barbeito CG, Odeon CA, Gimeno EJ, Campero CM. 112.  2011. Histopathological, immunohistochemical, lectinhistochemical and molecular findings in spontaneous bovine abortions by Campylobacter fetus. Reprod. Domest. Anim. 46:309–15 [Google Scholar]
  113. Hum S, Quinn K, Brunner J, On SL. 113.  1997. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies. Aust. Vet. J. 75:827–31 [Google Scholar]
  114. Chaban B, Chu S, Hendrick S, Waldner C, Hill JE. 114.  2012. Evaluation of a Campylobacter fetus subspecies venerealis real-time quantitative polymerase chain reaction for direct analysis of bovine preputial samples. Can. J. Vet. Res. 76:166–73 [Google Scholar]
  115. Gorkiewicz G, Kienesberger S, Schober C, Scheicher SR, Gully C. 115.  et al. 2010. A genomic island defines subspecies-specific virulence features of the host-adapted pathogen Campylobacter fetus subsp. venerealis. J. Bacteriol. 192:502–17 [Google Scholar]
  116. Muhamadali H, Weaver D, Subaihi A, AlMasoud N, Trivedi DK. 116.  et al. 2016. Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry. Analyst 141:111–22 [Google Scholar]
  117. Clark BL, Dufty JH, Monsbourgh MJ. 117.  1968. Experimental Vibrio fetus (venerealis) infection in heifers: the immunising properties of killed organisms injected subcutaneously. Aust. Vet. J. 44:110–14 [Google Scholar]
  118. Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE. 118.  2006. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44:4125–35 [Google Scholar]
  119. van der Graaf-van Bloois L, Miller WG, Yee E, Bono JL, Rijnsburger M. 119.  et al. 2014. First closed genome sequence of Campylobacter fetus subsp. venerealis bv. intermedius. Genome Announc. 2:e01246–13 [Google Scholar]
  120. van der Graaf-van Bloois L, Miller WG, Yee E, Rijnsburger M, Wagenaar JA, Duim B. 120.  2014. Inconsistency of phenotypic and genomic characteristics of Campylobacter fetus subspecies requires reevaluation of current diagnostics. J. Clin. Microbiol. 52:4183–88 [Google Scholar]
  121. Kawai F, Paek S, Choi KJ, Prouty M, Kanipes MI. 121.  et al. 2012. Crystal structure of JlpA, a surface-exposed lipoprotein adhesin of Campylobacter jejuni. J. Struct. Biol. 177:583–88 [Google Scholar]
  122. Young KT, Davis LM, DiRita VJ. 122.  2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5:665–79 [Google Scholar]
  123. Tu ZC, Wassenaar TM, Thompson SA, Blaser MJ. 123.  2003. Structure and genotypic plasticity of the Campylobacter fetus sap locus. Mol. Microbiol. 48:685–98 [Google Scholar]
  124. Ali A, Soares SC, Santos AR, Guimaraes LC, Barbosa E. 124.  et al. 2012. Campylobacter fetus subspecies: comparative genomics and prediction of potential virulence targets. Gene 508:145–56 [Google Scholar]
  125. Kienesberger S, Sprenger H, Wolfgruber S, Halwachs B, Thallinger GG. 125.  et al. 2014. Comparative genome analysis of Campylobacter fetus subspecies revealed horizontally acquired genetic elements important for virulence and niche specificity. PLOS ONE 9:e85491 [Google Scholar]
  126. Wu Z, Sahin O, Shen Z, Liu P, Miller WG, Zhang Q. 126.  2013. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni. Genome Biol. Evol. 5:2217–30 [Google Scholar]
  127. Sahin O, Terhorst S, Burrough ER, Shen Z, Wu Z. 127.  et al. 2015. Key role of capsular polysaccharide in the induction of systemic infection and abortion by Campylobacter jejuni. Abstracts 18th Int. Worksh. Campylobacter, Helicobacter, and Relat. Org., Queenstown, N.Z.
  128. Gibreel A, Tracz DM, Nonaka L, Ngo TM, Connell SR, Taylor DE. 128.  2004. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance. Antimicrob. Agents Chemother. 48:3442–50 [Google Scholar]
  129. Poly F, Read TD, Chen YH, Monteiro MA, Serichantalergs O. 129.  et al. 2008. Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies. Infect. Immun. 76:5655–67 [Google Scholar]
  130. van Putten JPM, van Alphen LB, Wosten MMSM, de Zoete MR. 130.  2009. Molecular mechanisms of Campylobacter infection. Curr. Top. Microbiol. Immunol. 337:197–229 [Google Scholar]
  131. Shen Z, Patil RD, Sahin O, Wu W, Pu XY. 131.  et al. 2016. Identification and functional analysis of two toxin-antitoxin systems in Campylobacter jejuni. Mol. Microbiol. 101:909–23 [Google Scholar]
/content/journals/10.1146/annurev-animal-022516-022826
Loading
/content/journals/10.1146/annurev-animal-022516-022826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error