1932

Abstract

During the past two decades, density-functional (DF) theory has evolved from niche applications for simple solid-state materials to become a workhorse method for studying a wide range of phenomena in a variety of system classes throughout physics, chemistry, biology, and materials science. Here, we review the recent advances in DF calculations for materials modeling, giving a classification of modern DF-based methods when viewed from the materials modeling perspective. While progress has been very substantial, many challenges remain on the way to achieving consensus on a set of universally applicable DF-based methods for materials modeling. Hence, we focus on recent successes and remaining challenges in DF calculations for modeling hard solids, molecular and biological matter, low-dimensional materials, and hybrid organic-inorganic materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010143
2019-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010143.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010143&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hafner J, Wolverton C, Ceder G 2006. Toward computational materials design: the impact of density functional theory on materials research. MRS Bull. 31:659–68
    [Google Scholar]
  2. 2.
    Burke K 2012. Perspective on density functional theory. J. Chem. Phys. 136:150901
    [Google Scholar]
  3. 3.
    Becke AD 2014. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140:18A301
    [Google Scholar]
  4. 4.
    Yu HS, Li SL, Truhlar DG 2016. Perspective: Kohn-Sham density functional theory descending a staircase. J. Chem. Phys. 145:130901
    [Google Scholar]
  5. 5.
    Jones RO 2015. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87:897–923
    [Google Scholar]
  6. 6.
    Mattsson AE, Schultz PA, Desjarlais MP, Mattsson TR, Leung K 2005. Designing meaningful density functional theory calculations in materials science—a primer. Model. Simul. Mater. Sci. Eng. 13:R1–31
    [Google Scholar]
  7. 7.
    Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S 2014. Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci. 39:1–24
    [Google Scholar]
  8. 8.
    Lejaeghere K, Bihlmayer G, Bjorkman T, Blaha P, Blugel S et al. 2016. Reproducibility in density functional theory calculations of solids. Science 351:aad3000
    [Google Scholar]
  9. 9.
    Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M et al. 2001. The CO/Pt(111) puzzle. J. Phys. Chem. B 105:4018–25
    [Google Scholar]
  10. 10.
    Liu W, Tkatchenko A, Scheffler M 2014. Modeling adsorption and reactions of organic molecules at metal surfaces. Acc. Chem. Res. 47:336977
    [Google Scholar]
  11. 11.
    Maurer RJ, Ruiz VG, Camarillo-Cisneros J, Liu W, Ferri N et al. 2016. Adsorption structures and energetics of molecules on metal surfaces: bridging experiment and theory. Prog. Surf. Sci. 91:72–100
    [Google Scholar]
  12. 12.
    Woodley SM, Catlow R 2008. Crystal structure prediction from first principles. Nat. Mater. 7:937–46
    [Google Scholar]
  13. 13.
    Kraisler E, Kronik L 2013. Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies. Phys. Rev. Lett. 110:126403
    [Google Scholar]
  14. 14.
    Dabo I, Ferretti A, Poilvert N, Li Y, Marzari N, Cococcioni M 2010. Koopmans’ condition for density-functional theory. Phys. Rev. B 82:115121
    [Google Scholar]
  15. 15.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE 2003. Climbing the density functional ladder: nonempirical metageneralized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401
    [Google Scholar]
  16. 16.
    Zhao Y, Truhlar DG 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120:215–41
    [Google Scholar]
  17. 17.
    Sun J, Ruzsinszky A, Perdew JP 2015. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115:036402
    [Google Scholar]
  18. 18.
    Mejia-Rodriguez D, Trickey SB 2018. Deorbitalized meta-GGA exchange-correlation functionals in solids. arXiv:1807.09216 [cond-mat.mtrl-sci]
    [Google Scholar]
  19. 19.
    Luo K, Karasiev VV, Trickey SB 2018. A simple generalized gradient approximation for the noninteracting kinetic energy density functional. Phys. Rev. B 98:041111
    [Google Scholar]
  20. 20.
    Heyd J, Scuseria GE, Ernzerhof M 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207
    [Google Scholar]
  21. 21.
    Vydrov OA, Scuseria GE 2006. Assessment of a long-range corrected hybrid functional. J. Chem. Phys. 125:234109
    [Google Scholar]
  22. 22.
    Skone JH, Govoni M, Galli G 2016. Nonempirical range-separated hybrid functionals for solids and molecules. Phys. Rev. B 93:235106
    [Google Scholar]
  23. 23.
    Ren X, Rinke P, Joas C, Scheffler M 2012. Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 47:7447–71
    [Google Scholar]
  24. 24.
    Grüneis A, Marsman M, Harl J, Schimka L, Kresse G 2009. Making the random phase approximation to electronic correlation accurate. J. Chem. Phys. 131:154115
    [Google Scholar]
  25. 25.
    Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G 2010. Hybrid functionals including random phase approximation correlation and second-order screened exchange. J. Chem. Phys. 132:094103
    [Google Scholar]
  26. 26.
    Ren X, Tkatchenko A, Rinke P, Scheffler M 2011. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Phys. Rev. Lett. 106:153003
    [Google Scholar]
  27. 27.
    Jauho TS, Olsen T, Bligaard T, Thygesen KS 2015. Improved description of metal oxide stability: beyond the random phase approximation with renormalized kernels. Phys. Rev. B 92:115140
    [Google Scholar]
  28. 28.
    Ren X, Rinke P, Scuseria GE, Scheffler M 2013. Renormalized second-order perturbation theory for the electron correlation energy: concept, implementation, and benchmarks. Phys. Rev. B 88:035120
    [Google Scholar]
  29. 29.
    Grimme S 2006. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124:034108
    [Google Scholar]
  30. 30.
    Goerigk L, Hansen A, Bauer CA, Ehrlich S, Najibi A, Grimme S 2017. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19:32184–215
    [Google Scholar]
  31. 31.
    Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:386568 Erratum. 1997. Phys. Rev. Lett. 78:1396
    [Google Scholar]
  32. 32.
    Adamo C, Barone V 1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–70
    [Google Scholar]
  33. 33.
    Grimme S 2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:1787–99
    [Google Scholar]
  34. 34.
    Becke AD 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52
    [Google Scholar]
  35. 35.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ 1994. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98:11623–27
    [Google Scholar]
  36. 36.
    Zhao Y, Truhlar DG 2006. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125:194101
    [Google Scholar]
  37. 37.
    Yu HS, He X, Li SL, Truhlar DG 2016. MN15: a Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7:5032–51
    [Google Scholar]
  38. 38.
    Mardirossian N, Head-Gordon M 2016. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144:214110
    [Google Scholar]
  39. 39.
    Himmetoglu B, Floris A, de Gironcoli S, Cococcioni M 2013. Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int. J. Quantum Chem. 114:14–49
    [Google Scholar]
  40. 40.
    Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA 2006. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78:865–951
    [Google Scholar]
  41. 41.
    Andersson Y, Langreth DC, Lundqvist BI 1996. van der Waals interactions in density-functional theory. Phys. Rev. Lett. 76:102–5
    [Google Scholar]
  42. 42.
    Hermann J, DiStasio RA Jr., Tkatchenko A 2017. First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem. Rev. 117:4714–58
    [Google Scholar]
  43. 43.
    Hermann J, Tkatchenko A 2018. van der Waals interactions in material modelling. Handbook of Materials Modelling W Andreoni, S Yip133 Cham, Switz.: Springer Int.
    [Google Scholar]
  44. 44.
    Berland K, Cooper VR, Lee K, Schröder E, Thonhauser T et al. 2015. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Progr. Phys. 78:066501
    [Google Scholar]
  45. 45.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C 2016. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116:5105–54
    [Google Scholar]
  46. 46.
    Klimeš J, Michaelides A 2012. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901
    [Google Scholar]
  47. 47.
    Grimme S 2004. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comp. Chem. 25:1463–73
    [Google Scholar]
  48. 48.
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  49. 49.
    Becke AD, Johnson ER 2007. Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 127:154108
    [Google Scholar]
  50. 50.
    Otero-de-la-Roza A, Johnson ER 2012. Van der Waals interactions in solids using the exchange-hole dipole moment model. J. Chem. Phys. 136:174109
    [Google Scholar]
  51. 51.
    Tkatchenko A, Scheffler M 2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005
    [Google Scholar]
  52. 52.
    Ruiz V, Liu W, Zojer E, Scheffler M, Tkatchenko A 2012. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys. Rev. Lett. 108:146103
    [Google Scholar]
  53. 53.
    Caldeweyher E, Bannwarth C, Grimme S 2017. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147:034112
    [Google Scholar]
  54. 54.
    Tkatchenko A, DiStasio RA Jr., Car R, Scheffler M 2012. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108:236402
    [Google Scholar]
  55. 55.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI 2004. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92:246401
    [Google Scholar]
  56. 56.
    von Lilienfeld OA, Tavernelli I, Röthlisberger U, Sebastiani D 2004. Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93:153004
    [Google Scholar]
  57. 57.
    Mardirossian N, Head-Gordon M 2017. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115:2315–72
    [Google Scholar]
  58. 58.
    Kresse G, Furthmüller J 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54:11169–86
    [Google Scholar]
  59. 59.
    Freysoldt C, Boeck S, Neugebauer J 2009. Direct minimization technique for metals in density functional theory. Phys. Rev. B 79:241103
    [Google Scholar]
  60. 60.
    Marek A, Blum V, Johanni R, Havu V, Lang B et al. 2014. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys. Condens. Matter 26:213201
    [Google Scholar]
  61. 61.
    Blöchl PE 1994. Projector augmented-wave method. Phys. Rev. B 50:17953–79
    [Google Scholar]
  62. 62.
    King-Smith RD, Vanderbilt D 1993. Theory of polarization of crystalline solids. Phys. Rev. B 47:1651–54
    [Google Scholar]
  63. 63.
    Pickard CJ, Mauri F 2003. Nonlocal pseudopotentials and magnetic fields. Phys. Rev. Lett. 91:196401
    [Google Scholar]
  64. 64.
    Gonze X 1995. Adiabatic density-functional perturbation theory. Phys. Rev. A 52:1096–114
    [Google Scholar]
  65. 65.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD et al. 2013. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1:011002
    [Google Scholar]
  66. 66.
    NOMAD 2015. The NOMAD repository http://nomad-repository.eu
  67. 67.
    Wang Y, Shang S, Chen LQ, Liu ZK 2013. Density functional theory–based database development and CALPHAD automation. JOM 65:1533–39
    [Google Scholar]
  68. 68.
    Bigdeli S, Ehtehsami H, Chen Q, Mao H, Korzhavy P, Selleby M 2016. New description of metastable hcp phase for unaries Fe and Mn: coupling between first-principles calculations and CALPHAD modeling. Phys. Status Solid. B 253:1830–36
    [Google Scholar]
  69. 69.
    Pandey M, Jacobsen KW 2015. Heats of formation of solids with error estimation: the mBEEF functional with and without fitted reference energies. Phys. Rev. B 91:235201
    [Google Scholar]
  70. 70.
    Hautier G, Ong SP, Jain A, Moore CJ, Ceder G 2012. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85:155208
    [Google Scholar]
  71. 71.
    Grabowski B, Wippermann S, Glensk A, Hickel T, Neugebauer J 2015. Random phase approximation up to the melting point: impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. Phys. Rev. B 91:201103
    [Google Scholar]
  72. 72.
    Duff AI, Davey T, Korbmacher D, Glensk A, Grabowski B et al. 2015. Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC. Phys. Rev. B 91:214311
    [Google Scholar]
  73. 73.
    Togo A, Tanaka I 2015. First principles phonon calculations in materials science. Scr. Mater. 108:1–5
    [Google Scholar]
  74. 74.
    Hellman O, Steneteg P, Abrikosov IA, Simak S 2013. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87:104111
    [Google Scholar]
  75. 75.
    Grabowski B, Ismer L, Hickel T, Neugebauer J 2009. Ab initio up to the melting point: anharmonicity and vacancies in aluminum. Phys. Rev. B 79:134106
    [Google Scholar]
  76. 76.
    Glensk A, Grabowski B, Hickel T, Neugebauer J 2015. Understanding anharmonicity in fcc materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys. Rev. Lett. 114:195901
    [Google Scholar]
  77. 77.
    Zhang X, Grabowski B, Krmann F, Freysoldt C, Neugebauer J 2017. Accurate electronic free energies of the 3d, 4d, and 5d transition metals at high temperatures. Phys. Rev. B 95:165126
    [Google Scholar]
  78. 78.
    Zhou F, Maxisch T, Ceder G 2006. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LiFePO4. Phys. Rev. Lett. 97:155704
    [Google Scholar]
  79. 79.
    Haule K, Pascut GL 2016. Forces for structural optimizations in correlated materials within a DFT + embedded DMFT functional approach. Phys. Rev. B 94:195146
    [Google Scholar]
  80. 80.
    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G et al. 2014. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86:253–305
    [Google Scholar]
  81. 81.
    Schimka L, Harl J, Kresse G 2011. Improved hybrid functional for solids: the HSEsol functional. J. Chem. Phys. 134:024116
    [Google Scholar]
  82. 82.
    Aulbur WG, Jönsson L, Wilkins JW 2000. Quasiparticle calculations in solids. Phys. Rev. B 54:1–218
    [Google Scholar]
  83. 83.
    Jeschke H, Opahle I, Kandpal H, Valentí R, Das H et al. 2011. Multistep approach to microscopic models for frustrated quantum magnets: the case of the natural mineral azurite. Phys. Rev. Lett. 106:217201
    [Google Scholar]
  84. 84.
    Körmann F, Dick A, Hickel T, Neugebauer J 2011. Role of spin quantization in determining the thermodynamic properties of magnetic transition metals. Phys. Rev. B 83:165114
    [Google Scholar]
  85. 85.
    Stockem I, Bergman A, Glensk A, Hickel T, Körmann F et al. 2018. Anomalous phonon lifetime shortening in paramagnetic CrN caused by spin-lattice coupling: a combined spin and ab initio molecular dynamics study. Phys. Rev. Lett. 121:125902
    [Google Scholar]
  86. 86.
    Sadigh B, Erhart P, Åberg D 2015. Variational polaron self-interaction-corrected total-energy functional for charge excitations in insulators. Phys. Rev. B 92:075202
    [Google Scholar]
  87. 87.
    Kokott S, Levchenko SV, Rinke P, Scheffler M 2018. First-principles supercell calculations of small polarons with proper account for long-range polarization effects. N. J. Phys. 20:033023
    [Google Scholar]
  88. 88.
    Körmann F, Grabowski B, Dutta B, Hickel T, Mauger L et al. 2014. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 113:165503
    [Google Scholar]
  89. 89.
    Zunger A, Wei SH, Ferreira LG, Bernard JE 1990. Special quasirandom structures. Phys. Rev. Lett. 65:353–56
    [Google Scholar]
  90. 90.
    Sanchez JM 2010. Cluster expansion and the configurational theory of alloys. Phys. Rev. B 81:224202
    [Google Scholar]
  91. 91.
    van de Walle A, Asta M 2002. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Model. Simul. Mater. Sci. Eng. 10:521–38
    [Google Scholar]
  92. 92.
    Yuge K, Okawa R 2014. Cluster expansion approach for modeling strain effects on alloy phase stability. Intermetallics 44:60–63
    [Google Scholar]
  93. 93.
    Dey P, Nazarov R, Dutta B, Yao M, Herbig M et al. 2017. Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides. Phys. Rev. B 95:104108
    [Google Scholar]
  94. 94.
    Makov G, Gattinoni C, Vita AD 2009. Ab initio based multiscale modelling for materials science. Model. Simul. Mater. Sci. Eng. 17:084008
    [Google Scholar]
  95. 95.
    Hasnip PJ, Refson K, Probert MIJ, Yates JR, Clark SJ, Pickard CJ 2014. Density functional theory in the solid state. Philos. Trans. R. Soc. A 372:20130270
    [Google Scholar]
  96. 96.
    Oganov AR, Saleh G, Kvashnin AGed 2019. Computational Materials Discovery Cambridge, UK: R. Soc. Chem.
  97. 97.
    Houk KN, Liu F 2017. Holy grails for computational organic chemistry and biochemistry. Acc. Chem. Res. 50:539–43
    [Google Scholar]
  98. 98.
    Price SL 2014. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43:2098–111
    [Google Scholar]
  99. 99.
    Price SL, Reutzel-Edens SM 2016. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discov. Today 21:912–23
    [Google Scholar]
  100. 100.
    Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD et al. 2016. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. B 72:439–59
    [Google Scholar]
  101. 101.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC 2016. The Cambridge Structural Database. Acta Crystallogr. B 72:171–79
    [Google Scholar]
  102. 102.
    Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J 2015. Facts and fictions about polymorphism. Chem. Soc. Rev. 44:8619–35
    [Google Scholar]
  103. 103.
    Nyman J, Day GM 2015. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 17:5154–65
    [Google Scholar]
  104. 104.
    Neumann MA, van de Streek J, Fabbiani FPA, Hidber P, Grassmann O 2015. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 6:7793
    [Google Scholar]
  105. 105.
    Stone AJ 1997. The Theory of Intermolecular Forces Oxford, UK: Oxford Univ. Press
  106. 106.
    Jones JTA, Hasell T, Wu X, Bacsa J, Jelfs KE et al. 2011. Modular and predictable assembly of porous organic molecular crystals. Nature 474:367–71
    [Google Scholar]
  107. 107.
    Reilly AM, Tkatchenko A 2015. van der Waals dispersion interactions in molecular materials: beyond pairwise additivity. Chem. Sci. 6:3289–301
    [Google Scholar]
  108. 108.
    Mardirossian N, Head-Gordon M 2014. WB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 16:9904–24
    [Google Scholar]
  109. 109.
    Wang Y, Jin X, Yu HS, Truhlar DG, He X 2017. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. PNAS 114:8487–92
    [Google Scholar]
  110. 110.
    van de Streek J, Neumann MA 2010. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallogr. B 66:544–58
    [Google Scholar]
  111. 111.
    Baias M, Dumez JN, Svensson PH, Schantz S, Day GM, Emsley L 2013. De novo determination of the crystal structure of a large drug molecule by crystal structure prediction–based powder NMR crystallography. J. Am. Chem. Soc. 135:17501–7
    [Google Scholar]
  112. 112.
    Hoja J, Reilly AM, Tkatchenko A 2017. First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. WIREs Comput. Mol. Sci. 7:e1294
    [Google Scholar]
  113. 113.
    Brandenburg JG, Potticary J, Sparkes HA, Price SL, Hall SR 2017. Thermal expansion of carbamazepine: Systematic crystallographic measurements challenge quantum chemical calculations. J. Phys. Chem. Lett. 8:4319–24
    [Google Scholar]
  114. 114.
    Otero-de-la-Roza A, Johnson ER 2012. A benchmark for non-covalent interactions in solids. J. Chem. Phys. 137:054103
    [Google Scholar]
  115. 115.
    Reilly AM, Tkatchenko A 2013. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 139:024705
    [Google Scholar]
  116. 116.
    Brandenburg JG, Maas T, Grimme S 2015. Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. J. Chem. Phys. 142:124104
    [Google Scholar]
  117. 117.
    Li XZ, Walker B, Michaelides A 2011. Quantum nature of the hydrogen bond. PNAS 108:6369–73
    [Google Scholar]
  118. 118.
    Rossi M, Gasparotto P, Ceriotti M 2016. Anharmonic and quantum fluctuations in molecular crystals: a first-principles study of the stability of paracetamol. Phys. Rev. Lett. 117:115702
    [Google Scholar]
  119. 119.
    Wang X, Garcia T, Monaco S, Schatschneider B, Marom N 2016. Effect of crystal packing on the excitonic properties of rubrene polymorphs. CrystEngComm 18:7353–62
    [Google Scholar]
  120. 120.
    Sharifzadeh S, Darancet P, Kronik L, Neaton JB 2013. Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4:2197–201
    [Google Scholar]
  121. 121.
    Schweinfurth D, Demeshko S, Hohloch S, Steinmetz M, Brandenburg JG et al. 2014. Spin crossover in Fe(II) and Co(II) complexes with the same click-derived tripodal ligand. Inorg. Chem. 53:8203–12
    [Google Scholar]
  122. 122.
    Bartók AP, Payne MC, Kondor R, Csányi G 2010. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104:136403
    [Google Scholar]
  123. 123.
    Balabin RM, Lomakina EI 2011. Support vector machine regression (LS-SVM)—an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?. Phys. Chem. Chem. Phys. 13:11710–18
    [Google Scholar]
  124. 124.
    Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA 2012. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108:058301
    [Google Scholar]
  125. 125.
    Baldauf C, Rossi M 2015. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation. J. Phys. Condens. Matter 27:493002
    [Google Scholar]
  126. 126.
    Dannenberg JJ 2005. The importance of cooperative interactions and a solid-state paradigm to proteins: what peptide chemists can learn from molecular crystals. Adv. Protein Chem. 72:227–73
    [Google Scholar]
  127. 127.
    Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M 2011. Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. Phys. Rev. Lett. 106:118102
    [Google Scholar]
  128. 128.
    Rossi M, Fang W, Michaelides A 2015. Stability of complex biomolecular structures: van der Waals, hydrogen bond cooperativity, and nuclear quantum effects. J. Phys. Chem. Lett. 6:4233–38
    [Google Scholar]
  129. 129.
    Voronina L, Masson A, Kamrath M, Schubert F, Clemmer D et al. 2016. Conformations of prolyl–peptide bonds in the bradykinin 1–5 fragment in solution and in the gas phase. J. Am. Chem. Soc. 138:9224–33
    [Google Scholar]
  130. 130.
    Head-Gordon T, Hura G 2002. Water structure from scattering experiments and simulation. Chem. Rev. 102:2651–70
    [Google Scholar]
  131. 131.
    Pettersson LGM, Henchman RH, Nilsson A 2016. Water—the most anomalous liquid. Chem. Rev. 116:7459–62
    [Google Scholar]
  132. 132.
    Ceriotti M, Fang W, Kusalik PG, McKenzie RH, Michaelides A et al. 2016. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116:7529–50
    [Google Scholar]
  133. 133.
    DiStasio RA, Santra B, Li Z, Wu X, Car R 2014. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J. Chem. Phys. 141:084502
    [Google Scholar]
  134. 134.
    Varma S, Rempe SB 2006. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124:192–99
    [Google Scholar]
  135. 135.
    Chen M, Zheng L, Santra B, Ko HY, DiStasio RA Jr. et al. 2018. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10:413–19
    [Google Scholar]
  136. 136.
    Kleshchonok A, Tkatchenko A 2018. Tailoring van der Waals dispersion interactions with external electric charges. Nat. Commun. 9:3017
    [Google Scholar]
  137. 137.
    Jarrold MF 2007. Helices and sheets in vacuo. Phys. Chem. Chem. Phys. 9:1659–71
    [Google Scholar]
  138. 138.
    Lindorff-Larsen K, Piana S, Dror RO, Shaw DE 2011. How fast-folding proteins fold. Science 334:517–20
    [Google Scholar]
  139. 139.
    Piana S, Lindorff-Larsen K, Shaw DE 2011. How robust are protein folding simulations with respect to force field parameterization?. Biophys. J. 100:L47–49
    [Google Scholar]
  140. 140.
    Sevgen E, Giberti F, Sidky H, Whitmer JK, Galli G et al. 2018. Hierarchical coupling of first-principles molecular dynamics with advanced sampling methods. J. Chem. Theory Comput. 14:2881–88
    [Google Scholar]
  141. 141.
    Yang L, Adam C, Nichol G, Cockroft S 2013. How much do van der Waals dispersion forces contribute to molecular recognition in solution?. Nat. Chem. 5:1006–10
    [Google Scholar]
  142. 142.
    Bereau T, DiStasio RA Jr., Tkatchenko A, Von Lilienfeld OA 2018. Non-covalent interactions across organic and biological subsets of chemical space: physics-based potentials parametrized from machine learning. J. Chem. Phys. 148:241706
    [Google Scholar]
  143. 143.
    Chmiela S, Sauceda HE, Müller KR, Tkatchenko A 2018. Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9:3887
    [Google Scholar]
  144. 144.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69
    [Google Scholar]
  145. 145.
    Geim AK, Novoselov KS 2007. The rise of graphene. Nat. Mater. 6:183–91
    [Google Scholar]
  146. 146.
    Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD et al. 2012. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6:3468–80
    [Google Scholar]
  147. 147.
    Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM 2012. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108:235502
    [Google Scholar]
  148. 148.
    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A et al. 2018. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13:246–52
    [Google Scholar]
  149. 149.
    Hod O 2012. Graphite and hexagonal boron-nitride have the same interlayer distance. Why?. J. Chem. Theory Comput. 8:1360–69
    [Google Scholar]
  150. 150.
    Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM 2012. Are we van der Waals ready?. J. Phys. Condens. Matter 24:424218
    [Google Scholar]
  151. 151.
    Björkman T 2014. Testing several recent van der Waals density functionals for layered structures. J. Chem. Phys. 141:074708
    [Google Scholar]
  152. 152.
    Dobson JF, Gould T 2012. Calculation of dispersion energies. J. Phys. Condens. Matter 24:073201
    [Google Scholar]
  153. 153.
    Marini A, García-González P, Rubio A 2006. First-principles description of correlation effects in layered materials. Phys. Rev. Lett. 96:136404
    [Google Scholar]
  154. 154.
    Lebègue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF 2010. Structural properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys. Rev. Lett. 105:196401
    [Google Scholar]
  155. 155.
    Spanu L, Sorella S, Galli G 2009. Nature and strength of interlayer binding in graphite. Phys. Rev. Lett. 103:196401
    [Google Scholar]
  156. 156.
    Olsen T, Thygesen KS 2013. Random phase approximation applied to solids, molecules, and graphene-metal interfaces: from van der Waals to covalent bonding. Phys. Rev. B 87:075111
    [Google Scholar]
  157. 157.
    Olsen T, Thygesen KS 2014. Accurate ground-state energies of solids and molecules from time-dependent density-functional theory. Phys. Rev. Lett. 112:203001
    [Google Scholar]
  158. 158.
    Vydrov OA, van Voorhis T 2010. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133:244103
    [Google Scholar]
  159. 159.
    Rydberg H, Dion M, Jacobson N, Schröder E, Hyldgaard P et al. 2003. Van der Waals density functional for layered structures. Phys. Rev. Lett. 91:126402
    [Google Scholar]
  160. 160.
    Peng H, Yang ZH, Perdew JP, Sun J 2016. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6:041005
    [Google Scholar]
  161. 161.
    Tawfik SA, Gould T, Stampfl C, Ford MJ 2018. Evaluation of van der Waals density functionals for layered materials. Phys. Rev. Mater. 2:034005
    [Google Scholar]
  162. 162.
    Kerber T, Sierka M, Sauer J 2008. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J. Comp. Chem. 29:2088–97
    [Google Scholar]
  163. 163.
    Barone V, Casarin M, Forrer D, Pavone M, Sambi M, Vittadini A 2009. Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J. Comp. Chem. 30:934–39
    [Google Scholar]
  164. 164.
    Bučko T, Hafner J, Lebègue S, Ángyán JG 2010. Improved description of the structure of molecular and layered crystals: ab-initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114:11814
    [Google Scholar]
  165. 165.
    Marom N, Tkatchenko A, Scheffler M, Kronik L 2010. Describing both dispersion interactions and electronic structure using density functional theory: the case of metal-phthalocyanine dimers. J. Chem. Theory Comput. 6:81–90
    [Google Scholar]
  166. 166.
    Al-Saidi WA, Voora VK, Jordan KD 2012. An assessment of the vdW-TS method for extended systems. J. Chem. Theory Comput. 8:1503–13
    [Google Scholar]
  167. 167.
    Bučko T, Lebègue S, Hafner J, Ángyán JG 2013. Tkatchenko-Scheffer van der Waals correction method with and without self-consistent screening applied to solids. Phys. Rev. B 87:064110
    [Google Scholar]
  168. 168.
    Gould T, Lebègue S, Ángyán JG, Bučko T 2016. A fractionally ionic approach to polarizability and van der Waals dispersion calculations. J. Chem. Theory Comput. 12:5920–30
    [Google Scholar]
  169. 169.
    Kim M, Kim WJ, Lee EK, Lebègue S, Kim H 2016. Recent development of atom-pairwise van der Waals corrections for density functional theory: from molecules to solids. Int. J. Quant. Chem. 116:598–607
    [Google Scholar]
  170. 170.
    Ambrosetti A, Reilly AM, DiStasio RA, Tkatchenko A 2014. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140:18A508
    [Google Scholar]
  171. 171.
    Bučko T, Lebègue S, Gould T, Ángyán JG 2016. Many-body dispersion corrections for periodic systems: an efficient, reciprocal space implementation. J. Phys. Condens. Mattter 28:045201
    [Google Scholar]
  172. 172.
    Gould T, Liu Z, Liu JZ, Dobson JF, Zheng Q, Lebègue S 2013. Binding and interlayer force in the near-contact region of two graphite slabs: experiment and theory. J. Chem. Phys. 139:224704
    [Google Scholar]
  173. 173.
    Girifalco LA, Lad RA 1956. Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys 25:693
    [Google Scholar]
  174. 174.
    Benedict LX, Chopra NG, Cohen ML, Zettl A, Louie SG, Crespi VH 1998. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286:490–96
    [Google Scholar]
  175. 175.
    Zacharia R, Ulbricht H, Hertel T 2004. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69:155406
    [Google Scholar]
  176. 176.
    Horowitz G 2004. Organic thin film transistors: from theory to real devices. J. Mater. Res. 19:1946–62
    [Google Scholar]
  177. 177.
    Parola S, Julián-López B, Carlos LD, Sanchez C 2016. Optical properties of hybrid organic-inorganic materials and their applications. Adv. Funct. Mater. 26:6506–44
    [Google Scholar]
  178. 178.
    Judeinstein P, Sanchez C 1996. Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6:511–25
    [Google Scholar]
  179. 179.
    Delley B, Wrinn M, Lüthi HP 1994. Binding energies, molecular structures, and vibrational frequencies of transition metal carbonyls using density functional theory with gradient corrections. J. Chem. Phys. 100:5785–91
    [Google Scholar]
  180. 180.
    Johnson BG, Gill PMW, Pople JA 1993. The performance of a family of density functional methods. J. Chem. Phys. 98:5612–26
    [Google Scholar]
  181. 181.
    Csonka GI, Perdew JP, Ruzsinszky A, Philipsen PH, Lebègue S et al. 2009. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79:155107
    [Google Scholar]
  182. 182.
    Körzdörfer T, Parrish RM, Sears JS, Sherrill CD, Bredas JL 2012. On the relationship between bond-length alternation and many-electron self-interaction error. J. Chem. Phys. 137:124305
    [Google Scholar]
  183. 183.
    Stroppa A, Kresse G 2008. The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. N. J. Phys. 10:063020
    [Google Scholar]
  184. 184.
    Klimeš J, Bowler DR, Michaelides A 2010. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22:02201
    [Google Scholar]
  185. 185.
    Maurer RJ, Ruiz VG, Tkatchenko A 2015. Many-body dispersion effects in the binding of adsorbates on metal surfaces. J. Chem. Phys. 143:102808
    [Google Scholar]
  186. 186.
    Liu W, Maaß F, Willenbockel M, Bronner C, Schulze M et al. 2015. Quantitative prediction of molecular adsorption: structure and binding of benzene on coinage metals. Phys. Rev. Lett. 115:036104
    [Google Scholar]
  187. 187.
    Maurer RJ, Wei L, Poltavsky I, Stecher T, Oberhofer H et al. 2016. Thermal and electronic fluctuations of flexible adsorbed molecules: azobenzene on Ag(111). Phys. Rev. Lett. 116:146101
    [Google Scholar]
  188. 188.
    Berland K, Hyldgaard P 2014. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89:035412
    [Google Scholar]
  189. 189.
    Berland K, Arter CA, Cooper VR, Lee K, Lundqvist BI et al. 2014. van der Waals density functionals built upon the electron-gas tradition: facing the challenge of competing interactions. J. Chem. Phys. 140:18A539
    [Google Scholar]
  190. 190.
    Rohlfing M, Bredow T 2008. Binding energy of adsorbates on a noble-metal surface: exchange and correlation effects. Phys. Rev. Lett. 101:266106
    [Google Scholar]
  191. 191.
    Koch N 2007. Organic electronic devices and their functional interfaces. Chem. Phys. Chem. 8:1438–55
    [Google Scholar]
  192. 192.
    Draxl C, Nabok D, Hannewald K 2014. Organic/inorganic hybrid materials: challenges for ab initio methodology. Acc. Chem. Res. 47:3225–32
    [Google Scholar]
  193. 193.
    Taucher TC, Hehn I, Hofmann OT, Zharnikov M, Zojer E 2016. Understanding chemical versus electrostatic shifts in X-ray photoelectron spectra of organic self-assembled monolayers. J. Phys. Chem. C 120:3428–37
    [Google Scholar]
  194. 194.
    van Setten MJ, Costa R, Vies F, Illas F 2018. Assessing GW approaches for predicting core level binding energies. J. Chem. Theory Comput. 14:877–83
    [Google Scholar]
  195. 195.
    Triguero L, Pettersson LGM, Ågren H 1998. Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 58:8097–110
    [Google Scholar]
  196. 196.
    Mizoguchi T, Tanaka I, Gao SP, Pickard CJ 2009. First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method. J. Phys. Condens. Matter 21:104204
    [Google Scholar]
  197. 197.
    Diller K, Maurer RJ, Müller M, Reuter K 2017. Interpretation of X-ray absorption spectroscopy in the presence of surface hybridization. J. Chem. Phys. 146:214701
    [Google Scholar]
  198. 198.
    Zhou JS, Kas JJ, Sponza L, Reshetnyak I, Guzzo M et al. 2015. Dynamical effects in electron spectroscopy. J. Chem. Phys. 143:184109
    [Google Scholar]
  199. 199.
    Golze D, Wilhelm J, van Setten MJ, Rinke P 2018. Core-level binding energies from GW: an efficient full-frequency approach within a localized basis. J. Chem. Theory Comput. 14:4856–69
    [Google Scholar]
  200. 200.
    Onida G, Reining L, Rubio A 2002. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74:601–59
    [Google Scholar]
  201. 201.
    Mowbray DJ, Migani A 2016. Optical absorption spectra and excitons of dye-substrate interfaces: catechol on TiO (110). J. Chem. Theory Comput. 12:2843–52
    [Google Scholar]
  202. 202.
    Matthes L, Pulci O, Bechstedt F 2016. Influence of out-of-plane response on optical properties of two-dimensional materials: first principles approach. Phys. Rev. B 94:205408
    [Google Scholar]
  203. 203.
    Behler J, Delley B, Reuter K, Scheffler M 2007. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 75:115409
    [Google Scholar]
  204. 204.
    Maurer RJ, Reuter K 2013. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT). J. Chem. Phys. 139:014708
    [Google Scholar]
  205. 205.
    Hickey AL, Rowley CN 2014. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. J. Phys. Chem. A 118:3678–87
    [Google Scholar]
  206. 206.
    Heimel G, Romaner L, Bredas JL, Zojer E 2006. Organic/metal interfaces in self-assembled monolayers of conjugated thiols: a first-principles benchmark study. Surf. Sci. 600:4548–62
    [Google Scholar]
  207. 207.
    Hofmann OT, Atalla V, Moll N, Rinke P, Scheffler M 2013. Interface dipoles of organic molecules on Ag(111) in hybrid density-functional theory. N. J. Phys. 15:123028
    [Google Scholar]
  208. 208.
    Biller A, Tamblyn I, Neaton JB, Kronik L 2011. Electronic level alignment at a metal-molecule interface from a short-range hybrid functional. J. Chem. Phys. 135:164706
    [Google Scholar]
  209. 209.
    Neaton JB, Hybertsen MS, Louie SG 2006. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97:216405
    [Google Scholar]
  210. 210.
    Sai N, Barbara PF, Leung K 2011. Hole localization in molecular crystals from hybrid density functional theory. Phys. Rev. Lett. 106:226403
    [Google Scholar]
  211. 211.
    Wruss E, Zojer E, Hofmann OT 2018. Distinguishing between charge-transfer mechanisms at organic/inorganic interfaces employing hybrid functionals. J. Phys. Chem. C 122:14640–53
    [Google Scholar]
  212. 212.
    Egger DA, Liu ZF, Neaton JB, Kronik L 2015. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory. Nano Lett. 15:2448–55
    [Google Scholar]
  213. 213.
    Migani A, Mowbray DJ, Zhao J, Petek H, Rubio A 2014. Quasiparticle level alignment for photocatalytic interfaces. J. Chem. Theory Comput. 10:2103–13
    [Google Scholar]
  214. 214.
    Gruenewald M, Schirra LK, Winget P, Kozlik M, Ndione PF et al. 2015. Integer charge transfer and hybridization at an organic semiconductor/conductive oxide interface. J. Phys. Chem. C 119:4865–73
    [Google Scholar]
  215. 215.
    Berger D, Logsdail AJ, Oberhofer H, Farrow MR, Catlow CRA et al. 2014. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. J. Chem. Phys. 141:024105
    [Google Scholar]
  216. 216.
    Sinai O, Hofmann OT, Rinke P, Scheffler M, Heimel G, Kronik L 2015. Multiscale approach to the electronic structure of doped semiconductor surfaces. Phys. Rev. B 91:075311
    [Google Scholar]
  217. 217.
    Masur O, Schütz M, Maschio L, Usvyat D 2016. Fragment-based direct-local-ring-coupled-cluster doubles treatment embedded in the periodic Hartree-Fock solution. J. Chem. Theory Comput. 12:5145–56
    [Google Scholar]
  218. 218.
    Bygrave PJ, Allan NL, Manby FR 2012. The embedded many-body expansion for energetics of molecular crystals. J. Chem. Phys. 137:164102
    [Google Scholar]
  219. 219.
    Riplinger C, Sandhoefer B, Hansen A, Neese F 2013. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139:134101
    [Google Scholar]
  220. 220.
    Schütz M, Werner HJ 2001. Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD). J. Chem. Phys. 114:661–81
    [Google Scholar]
  221. 221.
    Beran GJO 2016. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 116:5567–613
    [Google Scholar]
  222. 222.
    Zen A, Brandenburg JG, Klimeš J, Tkatchenko A, Alfè D, Michaelides A 2017. Fast and accurate quantum Monte Carlo for molecular crystals. PNAS 115:1724–29
    [Google Scholar]
  223. 223.
    Brandenburg JG, Bates JE, Sun J, Perdew JP 2016. Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction. Phys. Rev. B 94:115144
    [Google Scholar]
  224. 224.
    Hermann J, Tkatchenko A 2018. Electronic exchange and correlation in van der Waals systems: balancing semilocal and nonlocal energy contributions. J. Chem. Theory Comput. 14:1361–69
    [Google Scholar]
  225. 225.
    Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R et al. 2017. The atomic simulation environment: a Python library for working with atoms. J. Phys. Condens. Matter 29:273002
    [Google Scholar]
  226. 226.
    Marques MA, Oliveira MJ, Burnus T 2012. Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183:2272–81
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010143
Loading
/content/journals/10.1146/annurev-matsci-070218-010143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error