1932

Abstract

For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.

Keyword(s): cancerMDM2MDMXp53tumorigenesis
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012414-040349
2016-05-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012414-040349.html?itemId=/content/journals/10.1146/annurev-pathol-012414-040349&mimeType=html&fmt=ahah

Literature Cited

  1. Vousden KH, Prives C. 1.  2009. Blinded by the light: the growing complexity of p53. Cell 137:413–31 [Google Scholar]
  2. Levine AJ, Oren M. 2.  2009. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9:749–58 [Google Scholar]
  3. Olivier M, Hollstein M, Hainaut P. 3.  2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspect. Biol. 2:a001008 [Google Scholar]
  4. Malkin D. 4.  2011. Li-Fraumeni syndrome. Genes Cancer 2:475–84 [Google Scholar]
  5. Donehower LA. 5.  2014. Insights into wild-type and mutant p53 functions provided by genetically engineered mice. Hum. Mutat. 35:715–27 [Google Scholar]
  6. Cahilly-Snyder L, Yang-Feng T, Francke U, George DL. 6.  1987. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat. Cell Mol. Genet. 13:235–44 [Google Scholar]
  7. Fakharzadeh SS, Trusko SP, George DL. 7.  1991. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10:1565–69 [Google Scholar]
  8. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. 8.  1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–45 [Google Scholar]
  9. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. 9.  1992. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83 [Google Scholar]
  10. Perry ME, Piette J, Zawadzki JA, Harvey D, Levine AJ. 10.  1993. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. PNAS 90:11623–27 [Google Scholar]
  11. Barak Y, Juven T, Haffner R, Oren M. 11.  1993. mdm2 expression is induced by wild type p53 activity. EMBO J. 12:461–68 [Google Scholar]
  12. Montes de Oca Luna R, Wagner DS, Lozano G. 12.  1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–6 [Google Scholar]
  13. Jones SN, Roe AE, Donehower LA, Bradley A. 13.  1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–8 [Google Scholar]
  14. Haupt Y, Maya R, Kazaz A, Oren M. 14.  1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–99 [Google Scholar]
  15. Kubbutat MH, Jones SN, Vousden KH. 15.  1997. Regulation of p53 stability by Mdm2. Nature 387:299–303 [Google Scholar]
  16. Honda R, Tanaka H, Yasuda H. 16.  1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27 [Google Scholar]
  17. Shieh SY, Ikeda M, Taya Y, Prives C. 17.  1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–34 [Google Scholar]
  18. Lavin MF, Gueven N. 18.  2006. The complexity of p53 stabilization and activation. Cell Death Differ. 13:941–50 [Google Scholar]
  19. Sherr CJ. 19.  1998. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12:2984–91 [Google Scholar]
  20. Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P. 20.  et al. 1996. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 15:5349–57 [Google Scholar]
  21. Sharp DA, Kratowicz SA, Sank MJ, George DL. 21.  1999. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274:38189–96 [Google Scholar]
  22. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M. 22.  1999. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447:5–9 [Google Scholar]
  23. Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M. 23.  et al. 2002. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol. Cell. Biol. 22:5527–38 [Google Scholar]
  24. Parant JM, Reinke V, Mims B, Lozano G. 24.  2001. Organization, expression, and localization of the murine mdmx gene and pseudogene. Gene 270:277–83 [Google Scholar]
  25. Zhao Y, Yu H, Hu W. 25.  2014. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sinica 46:180–89 [Google Scholar]
  26. Kawai H, Wiederschain D, Yuan ZM. 26.  2003. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol. Cell. Biol. 23:4939–47 [Google Scholar]
  27. Meulmeester E, Frenk R, Stad R, de Graaf P, Marine JC. 27.  et al. 2003. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol. Cell. Biol. 23:4929–38 [Google Scholar]
  28. Manfredi JJ. 28.  2010. The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 24:1580–89 [Google Scholar]
  29. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ. 29.  et al. 2007. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26:90–101 [Google Scholar]
  30. Uldrijan S, Pannekoek WJ, Vousden KH. 30.  2007. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26:102–12 [Google Scholar]
  31. Clegg HV, Itahana K, Zhang Y. 31.  2008. Unlocking the Mdm2-p53 loop: Ubiquitin is the key. Cell Cycle 7:287–92 [Google Scholar]
  32. Lin J, Chen J, Elenbaas B, Levine AJ. 32.  1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–46 [Google Scholar]
  33. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J. 33.  et al. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–53 [Google Scholar]
  34. Ma J, Martin JD, Zhang H, Auger KR, Ho TF. 34.  et al. 2006. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. Biochemistry 45:9238–45 [Google Scholar]
  35. Shimizu H, Burch LR, Smith AJ, Dornan D, Wallace M. 35.  et al. 2002. The conformationally flexible S9–S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J. Biol. Chem. 277:28446–58 [Google Scholar]
  36. Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL. 36.  2006. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol. Cell 23:251–63 [Google Scholar]
  37. Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR. 37.  2006. The central region of HDM2 provides a second binding site for p53. PNAS 103:1227–32 [Google Scholar]
  38. Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J. 38.  2011. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J. Biol. Chem. 286:16018–29 [Google Scholar]
  39. Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M. 39.  et al. 2010. The C terminus of p53 binds the N-terminal domain of MDM2. Nat. Struct. Mol. Biol. 17:982–89 [Google Scholar]
  40. Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M. 40.  et al. 2010. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J. Biol. Chem. 285:29111–27 [Google Scholar]
  41. Bottger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ. 41.  et al. 1999. Comparative study of the p53–mdm2 and p53–MDMX interfaces. Oncogene 18:189–99 [Google Scholar]
  42. Popowicz GM, Czarna A, Holak TA. 42.  2008. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7:2441–43 [Google Scholar]
  43. Shadfan M, Lopez-Pajares V, Yuan ZM. 43.  2012. MDM2 and MDMX: alone and together in regulation of p53. Transl. Cancer Res. 1:88–89 [Google Scholar]
  44. Priest C, Prives C, Poyurovsky MV. 44.  2010. Deconstructing nucleotide binding activity of the Mdm2 RING domain. Nucleic Acids Res. 38:7587–98 [Google Scholar]
  45. Poyurovsky MV, Jacq X, Ma C, Karni-Schmidt O, Parker PJ. 45.  et al. 2003. Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization. Mol. Cell 12:875–87 [Google Scholar]
  46. Stevens C, Pettersson S, Wawrzynow B, Wallace M, Ball K. 46.  et al. 2008. ATP stimulates MDM2-mediated inhibition of the DNA-binding function of E2F1. FEBS J. 275:4875–86 [Google Scholar]
  47. Singh RK, Iyappan S, Scheffner M. 47.  2007. Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2. J. Biol. Chem. 282:10901–7 [Google Scholar]
  48. Bista M, Petrovich M, Fersht AR. 48.  2013. MDMX contains an autoinhibitory sequence element. PNAS 110:17814–19 [Google Scholar]
  49. Iwakuma T, Lozano G. 49.  2003. MDM2, an introduction. Mol. Cancer Res. 1:993–1000 [Google Scholar]
  50. Jain AK, Barton MC. 50.  2010. Making sense of ubiquitin ligases that regulate p53. Cancer Biol. Ther. 10:665–72 [Google Scholar]
  51. Meek DW, Anderson CW. 51.  2009. Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor Perspect. Biol. 1:a000950 [Google Scholar]
  52. Kulikov R, Letienne J, Kaur M, Grossman SR, Arts J, Blattner C. 52.  2010. Mdm2 facilitates the association of p53 with the proteasome. PNAS 107:10038–43 [Google Scholar]
  53. Brooks CL, Gu W. 53.  2011. p53 regulation by ubiquitin. FEBS Lett. 585:2803–9 [Google Scholar]
  54. Barak Y, Gottlieb E, Juven-Gershon T, Oren M. 54.  1994. Regulation of mdm2 expression by p53: Alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8:1739–49 [Google Scholar]
  55. Wu X, Bayle JH, Olson D, Levine AJ. 55.  1993. The p53–mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–32 [Google Scholar]
  56. Lev Bar-Or R, Maya R, Segel LA, Alon U, Levine AJ, Oren M. 56.  2000. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. PNAS 97:11250–55 [Google Scholar]
  57. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ. 57.  et al. 2004. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nat. Genet. 36:147–50 [Google Scholar]
  58. Hu W, Feng Z, Ma L, Wagner J, Rice JJ. 58.  et al. 2007. A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Res. 67:2757–65 [Google Scholar]
  59. Pant V, Xiong S, Jackson JG, Post SM, Abbas HA. 59.  et al. 2013. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev. 27:1857–67 [Google Scholar]
  60. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P. 60.  et al. 2006. A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–19 [Google Scholar]
  61. Wade M, Wahl GM. 61.  2009. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry?. Mol. Cancer Res. 7:1–11 [Google Scholar]
  62. Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V. 62.  et al. 2001. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat. Genet. 29:92–95 [Google Scholar]
  63. Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G. 63.  2006. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13:927–34 [Google Scholar]
  64. Steinman HA, Hoover KM, Keeler ML, Sands AT, Jones SN. 64.  2005. Rescue of Mdm4-deficient mice by Mdm2 reveals functional overlap of Mdm2 and Mdm4 in development. Oncogene 24:7935–40 [Google Scholar]
  65. Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM. 65.  2007. Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. PNAS 104:12365–70 [Google Scholar]
  66. Wang X, Wang J, Jiang X. 66.  2011. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J. Biol. Chem. 286:23725–34 [Google Scholar]
  67. Kawai H, Lopez-Pajares V, Kim MM, Wiederschain D, Yuan ZM. 67.  2007. RING domain-mediated interaction is a requirement for MDM2's E3 ligase activity. Cancer Res. 67:6026–30 [Google Scholar]
  68. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. 68.  2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15:841–44 [Google Scholar]
  69. Li C, Chen L, Chen J. 69.  2002. DNA damage induces MDMX nuclear translocation by p53-dependent and -independent mechanisms. Mol. Cell. Biol. 22:7562–71 [Google Scholar]
  70. Pan Y, Chen J. 70.  2003. MDM2 promotes ubiquitination and degradation of MDMX. Mol. Cell. Biol. 23:5113–21 [Google Scholar]
  71. Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM. 71.  2003. DNA damage-induced MDMX degradation is mediated by MDM2. J. Biol. Chem. 278:45946–53 [Google Scholar]
  72. Huang L, Yan Z, Liao X, Li Y, Yang J. 72.  et al. 2011. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. PNAS 108:12001–6 [Google Scholar]
  73. Pant V, Xiong S, Iwakuma T, Quintas-Cardama A, Lozano G. 73.  2011. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. PNAS 108:11995–2000 [Google Scholar]
  74. Tollini LA, Jin A, Park J, Zhang Y. 74.  2014. Regulation of p53 by Mdm2 E3 ligase function is dispensable in embryogenesis and development, but essential in response to DNA damage. Cancer Cell 26:235–47 [Google Scholar]
  75. Di Conza G, Mancini F, Buttarelli M, Pontecorvi A, Trimarchi F, Moretti F. 75.  2012. MDM4 enhances p53 stability by promoting an active conformation of the protein upon DNA damage. Cell Cycle 11:749–60 [Google Scholar]
  76. Toledo F, Wahl GM. 76.  2006. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6:909–23 [Google Scholar]
  77. Perry ME. 77.  2010. The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harbor Perspect. Biol. 2:a000968 [Google Scholar]
  78. Yu Q, Li Y, Mu K, Li Z, Meng Q. 78.  et al. 2014. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn. Pathol. 9:71 [Google Scholar]
  79. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M. 79.  et al. 2004. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol. Cell. Biol. 24:5835–43 [Google Scholar]
  80. Matijasevic Z, Krzywicka-Racka A, Sluder G, Jones SN. 80.  2008. MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 7:2967–73 [Google Scholar]
  81. Matijasevic Z, Steinman HA, Hoover K, Jones SN. 81.  2008. MdmX promotes bipolar mitosis to suppress transformation and tumorigenesis in p53-deficient cells and mice. Mol. Cell. Biol. 28:1265–73 [Google Scholar]
  82. Mancini F, Di Conza G, Pellegrino M, Rinaldo C, Prodosmo A. 82.  et al. 2009. MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J. 28:1926–39 [Google Scholar]
  83. Zhu Y, Regunath K, Jacq X, Prives C. 83.  2013. Cisplatin causes cell death via TAB1 regulation of p53/MDM2/MDMX circuitry. Genes Dev. 27:1739–51 [Google Scholar]
  84. Wade M, Li YC, Wahl GM. 84.  2013. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13:83–96 [Google Scholar]
  85. Momand J, Jung D, Wilczynski S, Niland J. 85.  1998. The MDM2 gene amplification database. Nucleic Acids Res. 26:3453–59 [Google Scholar]
  86. Mairinger FD, Walter RF, Ting S, Vollbrecht C, Kollmeier J. 86.  et al. 2014. Mdm2 protein expression is strongly associated with survival in malignant pleural mesothelioma. Future Oncol. 10:995–1005 [Google Scholar]
  87. Walter RF, Mairinger FD, Ting S, Vollbrecht C, Mairinger T. 87.  et al. 2015. MDM2 is an important prognostic and predictive factor for platin–pemetrexed therapy in malignant pleural mesotheliomas and deregulation of P14/ARF (encoded by CDKN2A) seems to contribute to an MDM2-driven inactivation of P53. Br. J. Cancer 112:883–90 [Google Scholar]
  88. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. 88.  1998. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. PNAS 95:15608–12 [Google Scholar]
  89. Senturk E, Manfredi JJ. 89.  2012. Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Genes Cancer 3:192–98 [Google Scholar]
  90. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG. 90.  et al. 2004. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602 [Google Scholar]
  91. Post SM, Quintas-Cardama A, Pant V, Iwakuma T, Hamir A. 91.  et al. 2010. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 18:220–30 [Google Scholar]
  92. Knappskog S, Bjornslett M, Myklebust LM, Huijts PE, Vreeswijk MP. 92.  et al. 2011. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell 19:273–82 [Google Scholar]
  93. Xu XL, Fang Y, Lee TC, Forrest D, Gregory-Evans C. 93.  et al. 2009. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137:1018–31 [Google Scholar]
  94. Yang J, Gao W, Song NH, Wang W, Zhang JX. 94.  et al. 2012. The risks, degree of malignancy and clinical progression of prostate cancer associated with the MDM2 T309G polymorphism: a meta-analysis. Asian J. Androl. 14:726–31 [Google Scholar]
  95. Ryan BM, Calhoun KM, Pine SR, Bowman ED, Robles AI. 95.  et al. 2012. MDM2 SNP285 does not antagonize the effect of SNP309 in lung cancer. Int. J. Cancer 131:2710–16 [Google Scholar]
  96. Hoffman Y, Bublik DR, Pilpel Y, Oren M. 96.  2014. miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ. 21:302–9 [Google Scholar]
  97. Wynendaele J, Bohnke A, Leucci E, Nielsen SJ, Lambertz I. 97.  et al. 2010. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 70:9641–49 [Google Scholar]
  98. Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP. 98.  2012. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLOS ONE 7e42034
  99. Bartel F, Schulz J, Bohnke A, Blumke K, Kappler M. 99.  et al. 2005. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int. J. Cancer 117:469–75 [Google Scholar]
  100. Veerakumarasivam A, Scott HE, Chin SF, Warren A, Wallard MJ. 100.  et al. 2008. High-resolution array-based comparative genomic hybridization of bladder cancers identifies Mouse Double Minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin. Cancer Res. 14:2527–34 [Google Scholar]
  101. Arai Y, Honda S, Haruta M, Kasai F, Fujiwara Y. 101.  et al. 2010. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer 49:596–609 [Google Scholar]
  102. Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N. 102.  et al. 2006. Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66 [Google Scholar]
  103. Gilkes DM, Pan Y, Coppola D, Yeatman T, Reuther GW, Chen J. 103.  2008. Regulation of MDMX expression by mitogenic signaling. Mol. Cell. Biol. 28:1999–2010 [Google Scholar]
  104. Atwal GS, Kirchhoff T, Bond EE, Montagna M, Menin C. 104.  et al. 2009. Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene. PNAS 106:10236–41 [Google Scholar]
  105. de Oliveira Reis AH, de Carvalho IN, de Sousa Damasceno PB, Ferman SE, Lucena E. 105.  et al. 2012. Influence of MDM2 and MDM4 on development and survival in hereditary retinoblastoma. Pediatr. Blood Cancer 59:39–43 [Google Scholar]
  106. Xiong S, Pant V, Suh YA, Van Pelt CS, Wang Y. 106.  et al. 2010. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res. 70:7148–54 [Google Scholar]
  107. De Clercq S, Gembarska A, Denecker G, Maetens M, Naessens M. 107.  et al. 2010. Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol. Cell. Biol. 30:5394–405 [Google Scholar]
  108. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M. 108.  et al. 2012. MDM4 is a key therapeutic target in cutaneous melanoma. Nat. Med. 18:1239–47 [Google Scholar]
  109. Han X, Garcia-Manero G, McDonnell TJ, Lozano G, Medeiros LJ. 109.  et al. 2007. HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Mod. Pathol. 20:54–62 [Google Scholar]
  110. Valentin-Vega YA, Barboza JA, Chau GP, El-Naggar AK, Lozano G. 110.  2007. High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum. Pathol. 38:1553–62 [Google Scholar]
  111. Bartel F, Harris LC, Wurl P, Taubert H. 111.  2004. MDM2 and its splice variant messenger RNAs: expression in tumors and down-regulation using antisense oligonucleotides. Mol. Cancer Res. 2:29–35 [Google Scholar]
  112. Okoro DR, Rosso M, Bargonetti J. 112.  2012. Splicing up mdm2 for cancer proteome diversity. Genes Cancer 3:311–19 [Google Scholar]
  113. Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW. 113.  2003. Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res. 63:5703–6 [Google Scholar]
  114. Volk EL, Schuster K, Nemeth KM, Fan L, Harris LC. 114.  2009. MDM2-A, a common Mdm2 splice variant, causes perinatal lethality, reduced longevity and enhanced senescence. Dis. Model. Mech. 2:47–55 [Google Scholar]
  115. Okoro DR, Arva N, Gao C, Polotskaia A, Puente C. 115.  et al. 2013. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator. PLOS ONE 8:e77643 [Google Scholar]
  116. Steinman HA, Burstein E, Lengner C, Gosselin J, Pihan G. 116.  et al. 2004. An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J. Biol. Chem. 279:4877–86 [Google Scholar]
  117. Yu Z, Zhang B, Cui B, Wang Y, Han P, Wang X. 117.  2012. Identification of spliced variants of the proto-oncogene hdm2 in colorectal cancer. Cancer 118:1110–18 [Google Scholar]
  118. Sam KK, Gan CP, Yee PS, Chong CE, Lim KP. 118.  et al. 2012. Novel MDM2 splice variants identified from oral squamous cell carcinoma. Oral Oncol. 48:1128–35 [Google Scholar]
  119. Wang X, Sheng P, Guo X, Wang J, Hou L. 119.  et al. 2013. Identification and expression of a novel MDM4 splice variant in human glioma. Brain Res. 1537:260–66 [Google Scholar]
  120. de Graaf P, Little NA, Ramos YF, Meulmeester E, Letteboer SJ, Jochemsen AG. 120.  2003. Hdmx protein stability is regulated by the ubiquitin ligase activity of Mdm2. J. Biol. Chem. 278:38315–24 [Google Scholar]
  121. Rallapalli R, Strachan G, Cho B, Mercer WE, Hall DJ. 121.  1999. A novel MDMX transcript expressed in a variety of transformed cell lines encodes a truncated protein with potent p53 repressive activity. J. Biol. Chem. 274:8299–308 [Google Scholar]
  122. Bartel F, Schulz J, Blumke K, Kappler M, Bache M. 122.  et al. 2004. [HDMX amplification and high levels of HDMX-S splice variant are correlated with a poor prognosis in soft tissue sarcomas]. Verh. Dtsch. Ges. Pathol. 88:199–206 [Google Scholar]
  123. Prodosmo A, Giglio S, Moretti S, Mancini F, Barbi F. 123.  et al. 2008. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J. Mol. Med. 86:585–96 [Google Scholar]
  124. Liang M, Han X, Vadhan-Raj S, Nguyen M, Zhang YH. 124.  et al. 2010. HDM4 is overexpressed in mantle cell lymphoma and its inhibition induces p21 expression and apoptosis. Mod. Pathol. 23:381–91 [Google Scholar]
  125. Bozzi F, Conca E, Laurini E, Posocco P, Lo Sardo A. 125.  et al. 2013. In vitro and in silico studies of MDM2/MDMX isoforms predict Nutlin-3A sensitivity in well/de-differentiated liposarcomas. Lab. Investig. 93:1232–40 [Google Scholar]
  126. Meek DW, Hupp TR. 126.  2010. The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours?. Semin. Cancer Biol. 20:19–28 [Google Scholar]
  127. Zhang Y, Lu H. 127.  2009. Signaling to p53: Ribosomal proteins find their way. Cancer Cell 16:369–77 [Google Scholar]
  128. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T. 128.  et al. 2003. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 23:8902–12 [Google Scholar]
  129. Lipton JM, Ellis SR. 129.  2010. Diamond Blackfan anemia 2008–2009: broadening the scope of ribosome biogenesis disorders. Curr. Opin. Pediatr. 22:12–19 [Google Scholar]
  130. Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M. 130.  et al. 2012. A new PICTure of nucleolar stress. Cancer Sci. 103:632–37 [Google Scholar]
  131. Teng T, Thomas G, Mercer CA. 131.  2013. Growth control and ribosomopathies. Curr. Opin. Genet. Dev. 23:63–71 [Google Scholar]
  132. Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. 132.  2014. Ribosomopathies: mechanisms of disease. Clin. Med. Insights Blood Disord. 7:7–16 [Google Scholar]
  133. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. 133.  2013. The MDM2–p53 pathway revisited. J. Biomed. Res. 27:254–71 [Google Scholar]
  134. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J. 134.  et al. 2009. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol. Cell 35:316–26 [Google Scholar]
  135. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. 135.  2008. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol. Cell 32:180–89 [Google Scholar]
  136. Miliani de Marval PL, Zhang Y. 136.  2011. The RP–Mdm2–p53 pathway and tumorigenesis. Oncotarget 2:234–38 [Google Scholar]
  137. Fumagalli S, Ivanenkov VV, Teng T, Thomas G. 137.  2012. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 26:1028–40 [Google Scholar]
  138. Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L. 138.  et al. 2012. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. PNAS 109:20467–72 [Google Scholar]
  139. Donati G, Peddigari S, Mercer CA, Thomas G. 139.  2013. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2–p53 checkpoint. Cell Rep. 4:87–98 [Google Scholar]
  140. Li M, Gu W. 140.  2011. A critical role for noncoding 5S rRNA in regulating Mdmx stability. Mol. Cell 43:1023–32 [Google Scholar]
  141. Macias E, Jin A, Deisenroth C, Bhat K, Mao H. 141.  et al. 2010. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein–Mdm2 interaction. Cancer Cell 18:231–43 [Google Scholar]
  142. Xiong X, Zhao Y, He H, Sun Y. 142.  2011. Ribosomal protein S27-like and S27 interplay with p53–MDM2 axis as a target, a substrate and a regulator. Oncogene 30:1798–811 [Google Scholar]
  143. Xiong X, Zhao Y, Tang F, Wei D, Thomas D. 143.  et al. 2014. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. eLife 3:e02236 [Google Scholar]
  144. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B. 144.  et al. 1997. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 11:714–25 [Google Scholar]
  145. Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M. 145.  2009. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 15:363–75 [Google Scholar]
  146. Kadakia M, Brown TL, McGorry MM, Berberich SJ. 146.  2002. MdmX inhibits Smad transactivation. Oncogene 21:8776–85 [Google Scholar]
  147. Wunderlich M, Ghosh M, Weghorst K, Berberich SJ. 147.  2004. MdmX represses E2F1 transactivation. Cell Cycle 3:472–78 [Google Scholar]
  148. Melo AN, Eischen CM. 148.  2012. Protecting the genome from Mdm2 and Mdmx. Genes Cancer 3:283–90 [Google Scholar]
  149. Carrillo AM, Bouska A, Arrate MP, Eischen CM. 149.  2014. Mdmx promotes genomic instability independent of p53 and Mdm2. Oncogene 34:846–56 [Google Scholar]
  150. Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M. 150.  et al. 2006. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol. Cell. Biol. 26:7269–82 [Google Scholar]
  151. Onel K, Cordon-Cardo C. 151.  2004. MDM2 and prognosis. Mol. Cancer Res. 2:1–8 [Google Scholar]
  152. Markey MP. 152.  2011. Regulation of MDM4. Front. Biosci. 16:1144–56 [Google Scholar]
  153. Ware PL, Snow AN, Gvalani M, Pettenati MJ, Qasem SA. 153.  2014. MDM2 copy numbers in well-differentiated and dedifferentiated liposarcoma: characterizing progression to high-grade tumors. Am. J. Clin. Pathol. 141:334–41 [Google Scholar]
  154. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO. 154.  et al. 2012. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–4 [Google Scholar]
  155. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B. 155.  et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBio Portal. Sci. Signal 6pl1
  156. Hedstrom G, Thunberg U, Amini RM, Zainuddin N, Enblad G, Berglund M. 156.  2014. The MDM2 polymorphism SNP309 is associated with clinical characteristics and outcome in diffuse large B-cell lymphoma. Eur. J. Haematol. 93:500–8 [Google Scholar]
  157. Jacob AG, O'Brien D, Singh RK, Comiskey DF Jr, Littleton RM. 157.  et al. 2013. Stress-induced isoforms of MDM2 and MDM4 correlate with high-grade disease and an altered splicing network in pediatric rhabdomyosarcoma. Neoplasia 15:1049–63 [Google Scholar]
  158. Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AF. 158.  et al. 2012. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res. 72:4074–84 [Google Scholar]
  159. Liu M, Zheng SJ, Chen Y, Li N, Ren PF. 159.  et al. 2014. Autoantibody response to Murine Double Minute 2 protein in immunodiagnosis of hepatocellular carcinoma. J. Immunol. Res 2014:906532 [Google Scholar]
  160. Chai Y, Peng B, Dai L, Qian W, Zhang Y, Zhang JY. 160.  2014. Autoantibodies response to MDM2 and p53 in the immunodiagnosis of esophageal squamous cell carcinoma. Scand. J. Immunol. 80:362–68 [Google Scholar]
  161. Liu W, He L, Ramirez J, Ratain MJ. 161.  2009. Interactions between MDM2 and TP53 genetic alterations, and their impact on response to MDM2 inhibitors and other chemotherapeutic drugs in cancer cells. Clin. Cancer Res. 15:7602–7 [Google Scholar]
  162. Tu HF, Chen HW, Kao SY, Lin SC, Liu CJ, Chang KW. 162.  2008. MDM2 SNP 309 and p53 codon 72 polymorphisms are associated with the outcome of oral carcinoma patients receiving postoperative irradiation. Radiother. Oncol. 87:243–52 [Google Scholar]
  163. Shinohara A, Sakano S, Hinoda Y, Nishijima J, Kawai Y. 163.  et al. 2009. Association of TP53 and MDM2 polymorphisms with survival in bladder cancer patients treated with chemoradiotherapy. Cancer Sci. 100:2376–82 [Google Scholar]
  164. Ye Y, Li X, Yang J, Miao S, Wang S. 164.  et al. 2013. MDM2 is a useful prognostic biomarker for resectable gastric cancer. Cancer Sci. 104:590–98 [Google Scholar]
  165. Ohnstad HO, Castro R, Sun J, Heintz KM, Vassilev LT. 165.  et al. 2013. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer 119:1013–22 [Google Scholar]
  166. Toledo F, Wahl GM. 166.  2007. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 39:1476–82 [Google Scholar]
  167. Lane DP, Cheok CF, Lain S. 167.  2010. p53-based cancer therapy. Cold Spring Harbor Perspect. Biol. 2:a001222 [Google Scholar]
  168. Chen F, Wang W, El-Deiry WS. 168.  2010. Current strategies to target p53 in cancer. Biochem. Pharmacol. 80:724–30 [Google Scholar]
  169. Li Q, Lozano G. 169.  2013. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin. Cancer Res. 19:34–41 [Google Scholar]
  170. Vassilev LT. 170.  2005. p53 Activation by small molecules: application in oncology. J. Med. Chem. 48:4491–99 [Google Scholar]
  171. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F. 171.  et al. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–48 [Google Scholar]
  172. Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, Penel N. 172.  et al. 2012. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13:1133–40 [Google Scholar]
  173. Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S. 173.  et al. 2006. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J. Med. Chem. 49:3432–35 [Google Scholar]
  174. Mohammad RM, Wu J, Azmi AS, Aboukameel A, Sosin A. 174.  et al. 2009. An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol. Cancer 8:115 [Google Scholar]
  175. Zak K, Pecak A, Rys B, Wladyka B, Domling A. 175.  et al. 2013. Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011–present). Expert Opin. Ther. Pat. 23:425–48 [Google Scholar]
  176. Lucas BS, Fisher B, McGee LR, Olson SH, Medina JC, Cheung E. 176.  2012. An expeditious synthesis of the MDM2–p53 inhibitor AM-8553. J. Am. Chem. Soc. 134:12855–60 [Google Scholar]
  177. Rew Y, Sun D, Gonzalez-Lopez De Turiso F, Bartberger MD. 177.  et al. 2012. Structure-based design of novel inhibitors of the MDM2–p53 interaction. J. Med. Chem. 55:4936–54 [Google Scholar]
  178. Canon J, Osgood T, Olson SH, Saiki AY, Robertson R. 178.  et al. 2015. The MDM2 inhibitor AMG 232 demonstrates robust anti-tumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol. Cancer Ther. 14:649–58 [Google Scholar]
  179. Sun D, Li Z, Rew Y, Gribble M, Bartberger MD. 179.  et al. 2014. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2–p53 inhibitor in clinical development. J. Med. Chem. 57:1454–72 [Google Scholar]
  180. Zhang Q, Zeng SX, Lu H. 180.  2014. Targeting p53–MDM2–MDMX loop for cancer therapy. Subcell. Biochem. 85:281–319 [Google Scholar]
  181. Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J. 181.  2006. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J. Biol. Chem. 281:33030–35 [Google Scholar]
  182. Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW. 182.  2006. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 66:3169–76 [Google Scholar]
  183. Wade M, Rodewald LW, Espinosa JM, Wahl GM. 183.  2008. BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle 7:1973–82 [Google Scholar]
  184. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG. 184.  et al. 2004. Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10:1321–28 [Google Scholar]
  185. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG. 185.  et al. 2010. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18:411–22 [Google Scholar]
  186. Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL. 186.  2007. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129:2456–57 [Google Scholar]
  187. Chee SM, Wongsantichon J, Soo Tng Q, Robinson R, Joseph TL. 187.  et al. 2014. Structure of a stapled peptide antagonist bound to Nutlin-resistant Mdm2. PLOS ONE 9:e104914 [Google Scholar]
  188. Wei WJ, Wang YL, Li DS, Wang Y, Wang XF. 188.  et al. 2013. Association between the rs2910164 polymorphism in pre-miR-146a sequence and thyroid carcinogenesis. PLOS ONE 8:e56638 [Google Scholar]
  189. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K. 189.  et al. 2013. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. PNAS 110:E3445–54 [Google Scholar]
  190. Brown CJ, Quah ST, Jong J, Goh AM, Chiam PC. 190.  et al. 2013. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8:506–12 [Google Scholar]
  191. Baek S, Kutchukian PS, Verdine GL, Huber R, Holak TA. 191.  et al. 2012. Structure of the stapled p53 peptide bound to Mdm2. J. Am. Chem. Soc. 134:103–6 [Google Scholar]
  192. Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q. 192.  2011. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53–Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorganic Med. Chem. Lett. 21:1472–75 [Google Scholar]
  193. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV. 193.  et al. 2005. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547–59 [Google Scholar]
  194. Roxburgh P, Hock AK, Dickens MP, Mezna M, Fischer PM, Vousden KH. 194.  2012. Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis 33:791–98 [Google Scholar]
  195. Herman AG, Hayano M, Poyurovsky MV, Shimada K, Skouta R. 195.  et al. 2011. Discovery of Mdm2–MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 1:312–25 [Google Scholar]
  196. Chargari C, Leteur C, Angevin E, Bashir T, Schoentjes B. 196.  et al. 2011. Preclinical assessment of JNJ-26854165 (Serdemetan), a novel tryptamine compound with radiosensitizing activity in vitro and in tumor xenografts. Cancer Lett. 312:209–18 [Google Scholar]
  197. Kojima K, Burks JK, Arts J, Andreeff M. 197.  2010. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol. Cancer Ther. 9:2545–57 [Google Scholar]
  198. Smith MA, Gorlick R, Kolb EA, Lock R, Carol H. 198.  et al. 2012. Initial testing of JNJ-26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatr. Blood Cancer 59:329–32 [Google Scholar]
  199. Jochemsen AG. 199.  2014. Reactivation of p53 as therapeutic intervention for malignant melanoma. Curr. Opin. Oncol. 26:114–19 [Google Scholar]
  200. Popowicz GM, Czarna A, Wolf S, Wang K, Wang W. 200.  et al. 2010. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53–MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–11 [Google Scholar]
  201. Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM. 201.  et al. 2010. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 285:10786–96 [Google Scholar]
  202. Bista M, Smithson D, Pecak A, Salinas G, Pustelny K. 202.  et al. 2012. On the mechanism of action of SJ-172550 in inhibiting the interaction of MDM4 and p53. PLOS ONE 7:e37518 [Google Scholar]
  203. Wang H, Ma X, Ren S, Buolamwini JK, Yan C. 203.  2011. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol. Cancer Ther. 10:69–79 [Google Scholar]
  204. Vaseva AV, Yallowitz AR, Marchenko ND, Xu S, Moll UM. 204.  2011. Blockade of Hsp90 by 17AAG antagonizes MDMX and synergizes with Nutlin to induce p53-mediated apoptosis in solid tumors. Cell Death Dis. 2:e156 [Google Scholar]
  205. Graves B, Thompson T, Xia M, Janson C, Lukacs C. 205.  et al. 2012. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. PNAS 109:11788–93 [Google Scholar]
  206. Hu B, Gilkes DM, Chen J. 206.  2007. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res. 67:8810–17 [Google Scholar]
  207. Lehman JA, Hauck PM, Gendron JM, Batuello CN, Eitel JA. 207.  et al. 2013. Serdemetan antagonizes the Mdm2-HIF1α axis leading to decreased levels of glycolytic enzymes. PLOS ONE 8:e74741 [Google Scholar]
  208. Pazgier M, Liu M, Zou G, Yuan W, Li C. 208.  et al. 2009. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. PNAS 106:4665–70 [Google Scholar]
  209. Al-Lazikani B, Banerji U, Workman P. 209.  2012. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30:679–92 [Google Scholar]
  210. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M. 210.  et al. 2008. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22:1337–44 [Google Scholar]
  211. Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I. 211.  et al. 2014. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11:1253–60 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012414-040349
Loading
/content/journals/10.1146/annurev-pathol-012414-040349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error