Skip to main content

Quantum Dots of ZnSe(S) Doped with Copper as Nanophotocatalyst in the Degradation of Organic Dyes

Buy Article:

$107.14 + tax (Refund Policy)

Copper-doped quantum dots of ZnSe(S) synthesized via microwave-heating conditions were used as photocatalyst in the photo-degradation of methylene blue (MB), methyl violet (MV) and victoria blue (VB) under UV irradiation (302 nm) in aqueous phase and at pH 6.5. Quantum dots were characterized by High Resolution Transmission Electron Microscopy (HR-TEM), X-ray diffraction (XRD), UV-Vis, photoluminescence and Fourier transform infrared (FT-IR) spectroscopy. The degradation of MB, MV and VB were monitored using High Performance Liquid Chromatography (HPLC) at 660 nm, 590 nm and 610 nm, respectively. Degradations percentages of 46%, 88% and 90% of MB, MV and VB, respectively, were achieved in presence of 1000 mg/L of quantum dots and 6 hours of UV-irradiation. Cu-doped ZnSe(S) QDs evidenced a remarkable capability to degrade cationic organic dyes as single components and in mixtures.

Document Type: Research Article

Publication date: 01 September 2014

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content