Skip to main content

Advertisement

Log in

Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development

  • Review Article
  • Theme: CNS Barriers in Health and Disease
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system—a review. Pflugers Arch. 2017;469(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8(12):711–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38(3):291–304.

    Article  CAS  PubMed  Google Scholar 

  5. Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–83.

    Article  CAS  PubMed  Google Scholar 

  6. Badaut J, Nehlig A, Verbavatz J, Stoeckel M, Freund-Mercier MJ, Lasbennes F. Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol. 2000;12(10):960–9.

    Article  CAS  PubMed  Google Scholar 

  7. Badaut J, Verbavatz JM, Freund-Mercier MJ, Lasbennes F. Presence of aquaporin-4 and muscarinic receptors in astrocytes and ependymal cells in rat brain: a clue to a common function? Neurosci Lett. 2000;292(2):75–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gleiser C, Wagner A, Fallier-Becker P, Wolburg H, Hirt B, Mack AF. Aquaporin-4 in astroglial cells in the CNS and supporting cells of sensory organs—a comparative perspective. Int J Mol Sci. 2016;17(9).

  9. Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. Biochim Biophys Acta. 2014;1840(5):1554–65.

    Article  CAS  PubMed  Google Scholar 

  10. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71(11):1018–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alluri H, Grimsley M, Anasooya Shaji C, Varghese KP, Zhang SL, Peddaboina C, et al. Attenuation of blood-brain barrier breakdown and hyperpermeability by calpain inhibition. J Biol Chem. 2016;291(53):26958–69.

    Article  CAS  PubMed  Google Scholar 

  12. Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T. Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl. 2006;96:130–3.

    Article  CAS  PubMed  Google Scholar 

  13. Muellner A, Benz M, Kloss CU, Mautes A, Burggraf D, Hamann GF. Microvascular basal lamina antigen loss after traumatic brain injury in the rat. J Neurotrauma. 2003;20(8):745–54.

    Article  PubMed  Google Scholar 

  14. Tao X, Chen X, Hao S, Hou Z, Lu T, Sun M, et al. Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood-brain barrier after traumatic brain injury in mice. Neuroscience. 2015;291:26–36.

    Article  CAS  PubMed  Google Scholar 

  15. Balusu S, Brkic M, Libert C, Vandenbroucke RE. The choroid plexus-cerebrospinal fluid interface in Alzheimer’s disease: more than just a barrier. Neural Regen Res. 2016;11(4):534–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun. 2015;50:1–13.

    Article  PubMed  Google Scholar 

  17. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10(5):1473–91.

    Article  CAS  PubMed  Google Scholar 

  19. Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9:32.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Szmydynger-Chodobska J, Strazielle N, Zink BJ, Ghersi-Egea JF, Chodobski A. The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(9):1503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, et al. Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab. 2012;32(1):93–104.

    Article  CAS  PubMed  Google Scholar 

  22. Szmydynger-Chodobska J, Gandy JR, Varone A, Shan R, Chodobski A. Synergistic interactions between cytokines and AVP at the blood-CSF barrier result in increased chemokine production and augmented influx of leukocytes after brain injury. PLoS One. 2013;8(11):e79328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma HS, Zimmermann-Meinzingen S, Johanson CE. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci. 2010;1199:125–37.

    Article  CAS  PubMed  Google Scholar 

  24. Dewan MC, Mummareddy N, Wellons JC, Bonfield CM. Epidemiology of global pediatric traumatic brain injury: qualitative review. World Neurosurg. 2016;91:497–509.e1.

    Article  PubMed  Google Scholar 

  25. Thompson HJ, McCormick WC, Kagan SH. Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc. 2006;54(10):1590–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Faul M, Xu L, Wald M, Coronado V. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths, 2002–2006. In: National Center for Injury Prevention and Control Atlanta G, CDC, editors. 2010.

  27. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir. 2006;148(3):255–68. discussion 68

    Article  CAS  PubMed  Google Scholar 

  28. Langlois J, Rutland-Brown W, Thomas K. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. In: Dept. of Health and Human Services CfDCaP, Division of Acute Care, Rehabilitation Research and Disability Prevention, National Center for Injury Prevention and Control, editor. 2004.

  29. McGinn MJ, Povlishock JT. Pathophysiology of traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):397–407.

    Article  PubMed  Google Scholar 

  30. Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen R, Fiest KM, McChesney J, Kwon CS, Jette N, Frolkis AD, et al. The international incidence of traumatic brain injury: a systematic review and meta-analysis. Can J Neurol Sci. 2016;43(6):774–85.

    Article  PubMed  Google Scholar 

  32. Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231–6.

    Article  PubMed  Google Scholar 

  33. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.

    Article  PubMed  Google Scholar 

  34. Daneshvar DH, Riley DO, Nowinski CJ, McKee AC, Stern RA, Cantu RC. Long-term consequences: effects on normal development profile after concussion. Phys Med Rehabil Clin N Am. 2011;22(4):683–700. ix

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, et al. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med. 2016;8(321):321ra6.

    Article  PubMed  CAS  Google Scholar 

  36. Dean PJ, Sterr A. Long-term effects of mild traumatic brain injury on cognitive performance. Front Hum Neurosci. 2013;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Himanen L, Portin R, Hämäläinen P, Hurme S, Hiekkanen H, Tenovuo O. Risk factors for reduced survival after traumatic brain injury: a 30-year follow-up study. Brain Inj. 2011;25(5):443–52.

    Article  PubMed  Google Scholar 

  38. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013;9(4):211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015;66(Pt B):75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann Neurol. 2015;77(6):987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Babikian T, Merkley T, Savage RC, Giza CC, Levin H. Chronic aspects of pediatric traumatic brain injury: review of the literature. J Neurotrauma. 2015;32(23):1849–60.

    Article  PubMed  Google Scholar 

  42. Konrad C, Geburek AJ, Rist F, Blumenroth H, Fischer B, Husstedt I, et al. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol Med. 2011;41(6):1197–211.

    Article  CAS  PubMed  Google Scholar 

  43. Dikmen SS, Corrigan JD, Levin HS, Machamer J, Stiers W, Weisskopf MG. Cognitive outcome following traumatic brain injury. J Head Trauma Rehabil. 2009;24(6):430–8.

    Article  PubMed  Google Scholar 

  44. Xiong Y, Zhang Y, Mahmood A, Chopp M. Investigational agents for treatment of traumatic brain injury. Expert Opin Investig Drugs. 2015;24(6):743–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2014;31(2):135–58.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pop V, Badaut J. A neurovascular perspective for long-term changes after brain trauma. Transl Stroke Res. 2011;2(4):533–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jullienne A, Roberts JM, Pop V, Paul Murphy M, Head E, Bix GJ, et al. Juvenile traumatic brain injury induces long-term perivascular matrix changes alongside amyloid-beta accumulation. J Cereb Blood Flow Metab. 2014;34(10):1637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamper JE, Pop V, Fukuda AM, Ajao DO, Hartman RE, Badaut J. Juvenile traumatic brain injury evolves into a chronic brain disorder: behavioral and histological changes over 6months. Exp Neurol. 2013;250:8–19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, et al. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau oligomers. J Neuropathol Exp Neurol. 2016;75(7):636–55.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 2014;73(1):14–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petraglia AL, Plog BA, Dayawansa S, Dashnaw ML, Czerniecka K, Walker CT, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma. 2014;31(13):1211–24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  54. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37(1):3–23.

    Article  CAS  PubMed  Google Scholar 

  56. Cabezas R, Avila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci. 2014;8:211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res. 2016;94(7):609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hall E. Translational principles of neuroprotective and neurorestorative therapy testing in animal models of traumatic brain injury. Translational research in traumatic brain injury. Frontiers in Neuroscience: CRC Press; 2015. p. 239–62.

  61. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24(7):987–93.

    Article  CAS  PubMed  Google Scholar 

  62. Narayan RK, Maas AI, Servadei F, Skolnick BE, Tillinger MN, Marshall LF, et al. Progression of traumatic intracerebral hemorrhage: a prospective observational study. J Neurotrauma. 2008;25(6):629–39.

    Article  PubMed  Google Scholar 

  63. Candefjord S, Winges J, Yu Y, Rylander T, McKelvey T. Microwave technology for localization of traumatic intracranial bleedings—a numerical simulation study. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1948–51.

    PubMed  Google Scholar 

  64. Koerte I, Hufschmidt J, Muehlmann M, Lin A, Shenton M. Advanced neuroimaging of mild traumatic brain injury. Translational research in traumatic brain injury. Frontiers in Neuroscience: CRC Press; 2015. p. 277–98.

  65. Huang YL, Kuo YS, Tseng YC, Chen DY, Chiu WT, Chen CJ. Susceptibility-weighted MRI in mild traumatic brain injury. Neurology. 2015;84(6):580–5.

    Article  PubMed  Google Scholar 

  66. Park JH, Park SW, Kang SH, Nam TK, Min BK, Hwang SN. Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean Neurosurg Soc. 2009;46(4):365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38(2 Suppl):759–62.

    Article  CAS  PubMed  Google Scholar 

  68. Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus. 2012;32(4):E8.

    Article  PubMed  Google Scholar 

  69. Morganti-Kossmann MC, Satgunaseelan L, Bye N, Kossmann T. Modulation of immune response by head injury. Injury. 2007;38(12):1392–400.

    Article  PubMed  Google Scholar 

  70. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    Article  CAS  PubMed  Google Scholar 

  71. Obenaus A, Ashwal S. Magnetic resonance imaging in cerebral ischemia: focus on neonates. Neuropharmacology. 2008;55(3):271–80.

    Article  CAS  PubMed  Google Scholar 

  72. Lucke-Wold BP, Logsdon AF, Smith KE, Turner RC, Alkon DL, Tan Z, et al. Bryostatin-1 restores blood brain barrier integrity following blast-induced traumatic brain injury. Mol Neurobiol. 2015;52(3):1119–34.

    Article  CAS  PubMed  Google Scholar 

  73. Wen J, Qian S, Yang Q, Deng L, Mo Y, Yu Y. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp Ther Med. 2014;8(3):881–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Badaut J, Ajao DO, Sorensen DW, Fukuda AM, Pellerin L. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing? Neuroscience. 2015;285:215–26.

    Article  CAS  PubMed  Google Scholar 

  75. Price L, Wilson C, Grant G. Blood-brain barrier pathophysiology following traumatic brain injury. Translational research in traumatic brain injury. Frontiers in Neuroscience: CRC Press; 2015. p. 85–96.

  76. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Purins K, Lewén A, Hillered L, Howells T, Enblad P. Brain tissue oxygenation and cerebral metabolic patterns in focal and diffuse traumatic brain injury. Front Neurol. 2014;5:64.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113(3):622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O'Donnell ME. Blood-brain barrier Na transporters in ischemic stroke. Adv Pharmacol. 2014;71:113–46.

    Article  PubMed  CAS  Google Scholar 

  80. Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32(9):1699–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab. 2013;33(10):1621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kitchen P, Day RE, Taylor LH, Salman MM, Bill RM, Conner MT, et al. Identification and molecular mechanisms of the rapid tonicity-induced Relocalization of the aquaporin 4 channel. J Biol Chem. 2015;290(27):16873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33(6):834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castejón OJ. Increased vesicular and vacuolar transport in traumatic human brain edema. A combined electron microscopic study and theoretical approach. J Submicrosc Cytol. 1984;16(2):359–69.

    PubMed  Google Scholar 

  85. Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol. 2007;114(5):459–69.

    Article  CAS  PubMed  Google Scholar 

  86. Nag S, Manias JL, Stewart DJ. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol. 2009;35(4):417–26.

    Article  CAS  PubMed  Google Scholar 

  87. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94(3):581–94.e5.

    Article  CAS  PubMed  Google Scholar 

  88. Niesman IR, Schilling JM, Shapiro LA, Kellerhals SE, Bonds JA, Kleschevnikov AM, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mirza MK, Yuan J, Gao XP, Garrean S, Brovkovych V, Malik AB, et al. Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation. Am J Pathol. 2010;176(5):2344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007;103(6):2540–55.

    Article  CAS  PubMed  Google Scholar 

  91. Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003;87(4):1010–23.

    Article  CAS  PubMed  Google Scholar 

  92. Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med. 2013;60:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen X, Zhao Z, Chai Y, Luo L, Jiang R, Zhang J. The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci. 2014;342(1–2):93–100.

    Article  PubMed  Google Scholar 

  94. Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab. 2010;30(6):1121–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 2015;51(3):966–79.

    Article  CAS  PubMed  Google Scholar 

  96. Jia F, Pan YH, Mao Q, Liang YM, Jiang JY. Matrix metalloproteinase-9 expression and protein levels after fluid percussion injury in rats: the effect of injury severity and brain temperature. J Neurotrauma. 2010;27(6):1059–68.

    Article  PubMed  Google Scholar 

  97. Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery. 2009;65(4):702–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  99. Del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Koziol JA. Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans. 2006;34(Pt 6):1261–6.

    PubMed  Google Scholar 

  100. Summers L, Kangwantas K, Rodriguez-Grande B, Denes A, Penny J, Kielty C, et al. Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Mol Cell Neurosci. 2013;57:93–103.

    Article  CAS  PubMed  Google Scholar 

  101. Burda JE, Bernstein AM, Sofroniew MV. Astrocyte roles in traumatic brain injury. Exp Neurol. 2016;275(Pt 3):305–15.

    Article  CAS  PubMed  Google Scholar 

  102. Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275(Pt 3):316–27.

    Article  CAS  PubMed  Google Scholar 

  103. Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci. 2009;30(3):385–96.

    Article  PubMed  Google Scholar 

  104. Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation. 2012;9:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol. 1997;61(3):279–85.

    CAS  PubMed  Google Scholar 

  106. Ito H, Yamamoto N, Arima H, Hirate H, Morishima T, Umenishi F, et al. Interleukin-1beta induces the expression of aquaporin-4 through a nuclear factor-kappaB pathway in rat astrocytes. J Neurochem. 2006;99(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  107. Ohnishi M, Monda A, Takemoto R, Fujimoto Y, Sugitani M, Iwamura T, et al. High-mobility group box 1 up-regulates aquaporin 4 expression via microglia-astrocyte interaction. Neurochem Int. 2014;75:32–8.

    Article  CAS  PubMed  Google Scholar 

  108. Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012;9:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal cortical dysfunction and blood-brain barrier disruption in patients with postconcussion syndrome. J Clin Neurophysiol. 2005;22(1):1–9.

    Article  PubMed  Google Scholar 

  110. Tomkins O, Shelef I, Kaizerman I, Eliushin A, Afawi Z, Misk A, et al. Blood-brain barrier disruption in post-traumatic epilepsy. J Neurol Neurosurg Psychiatry. 2008;79(7):774–7.

    Article  CAS  PubMed  Google Scholar 

  111. Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999;101(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  112. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57.

    CAS  PubMed  Google Scholar 

  113. Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014;31(13):1180–93.

    Article  PubMed  Google Scholar 

  114. Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91.

    Article  PubMed  Google Scholar 

  115. Pop V, Sorensen DW, Kamper JE, Ajao DO, Murphy MP, Head E, et al. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab. 2013;33(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  116. Badaut J, Bix GJ. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res. 2014;5(3):394–406.

    Article  CAS  PubMed  Google Scholar 

  117. McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, et al. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem. 2012;122(5):962–75.

    Article  CAS  PubMed  Google Scholar 

  118. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):16180–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA. Studies of the choroid plexus and its associated epiplexus cells in the lateral ventricles of rats following an exposure to a single non-penetrative blast. Arch Histol Cytol. 1996;59(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  120. Maxwell WL, Hardy IG, Watt C, McGadey J, Graham DI, Adams JH, et al. Changes in the choroid plexus, responses by intrinsic epiplexus cells and recruitment from monocytes after experimental head acceleration injury in the non-human primate. Acta Neuropathol. 1992;84(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  121. Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna). 2011;118(1):115–33.

    Article  CAS  Google Scholar 

  122. Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci. 2012;69(17):2863–78.

    Article  CAS  PubMed  Google Scholar 

  123. Kochanek PM, Carney N, Adelson PD, Ashwal S, Bell MJ, Bratton S, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents—second edition. Pediatr Crit Care Med. 2012;13(Suppl 1):S1–82.

    PubMed  Google Scholar 

  124. Stein DM, Feather CB, Napolitano LM. Traumatic brain injury advances. Crit Care Clin. 2017;33(1):1–13.

    Article  PubMed  Google Scholar 

  125. Khalili H, Derakhshan N, Niakan A, Ghaffarpasand F, Salehi M, Eshraghian H, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial. World Neurosurg. 2017.

  126. Ding J, Yuan F, Guo JY, Chen H, Tian HL. Influence of glibenclamide on outcome in patients with type 2 diabetes and traumatic brain injury. Clin Neurol Neurosurg. 2013;115(10):2166–9.

    Article  PubMed  Google Scholar 

  127. Hadass O, Tomlinson BN, Gooyit M, Chen S, Purdy JJ, Walker JM, et al. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One. 2013;8(10):e76904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee M, Chen Z, Tomlinson BN, Gooyit M, Hesek D, Juárez MR, et al. Water-soluble MMP-9 inhibitor reduces lesion volume after severe traumatic brain injury. ACS Chem Neurosci. 2015;6(10):1658–64.

    Article  CAS  PubMed  Google Scholar 

  129. Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol. 2016;275(Pt 3):367–80.

    Article  CAS  PubMed  Google Scholar 

  130. Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab. 2014;34(5):845–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs. 2012;26(12):1051–70.

    Article  CAS  PubMed  Google Scholar 

  132. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675–84.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang B, Wang B, Cao S, Wang Y. Epigallocatechin-3-gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol. 2015;19(6):491–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Effect of epigallocatechin-3-gallate supplementation in traumatic brain injury patients [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02731495.

  135. Thal SC, Neuhaus W. The blood-brain barrier as a target in traumatic brain injury treatment. Arch Med Res. 2014;45(8):698–710.

    Article  CAS  PubMed  Google Scholar 

  136. Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol. 2017;37(4):571–85.

    Article  CAS  PubMed  Google Scholar 

  137. Peng W, Yang J, Yang B, Wang L, Xiong XG, Liang Q. Impact of statins on cognitive deficits in adult male rodents after traumatic brain injury: a systematic review. Biomed Res Int. 2014;2014:261409.

    PubMed  PubMed Central  Google Scholar 

  138. Roozenbeek B, Lingsma HF, Maas AI. New considerations in the design of clinical trials for traumatic brain injury. Clin Investig (Lond). 2012;2(2):153–62.

    Article  Google Scholar 

  139. Martin G. Traumatic brain injury: the first 15 milliseconds. Brain Inj. 2016:1–8.

  140. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303.

    Article  PubMed  Google Scholar 

  141. Arenth PM, Russell KC, Scanlon JM, Kessler LJ, Ricker JH. Corpus callosum integrity and neuropsychological performance after traumatic brain injury: a diffusion tensor imaging study. J Head Trauma Rehabil. 2014;29(2):E1–E10.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hu X, Tao C, Gan Q, Zheng J, Li H, You C. Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxidative Med Cell Longev. 2016;2016:3215391.

    Google Scholar 

  143. Toga AW, Thompson PM, Sowell ER. Mapping brain maturation. Trends Neurosci. 2006;29(3):148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nash B, Thomson CE, Linington C, Arthur AT, McClure JD, McBride MW, et al. Functional duality of astrocytes in myelination. J Neurosci. 2011;31(37):13028–38.

    Article  CAS  PubMed  Google Scholar 

  145. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science. 2001;291(5504):657–61.

    Article  CAS  PubMed  Google Scholar 

  146. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, et al. Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res Rev. 2010;63(1–2):26–38.

    Article  CAS  PubMed  Google Scholar 

  147. Aldrich EF, Eisenberg HM, Saydjari C, Luerssen TG, Foulkes MA, Jane JA, et al. Diffuse brain swelling in severely head-injured children. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1992;76(3):450–4.

    Article  CAS  PubMed  Google Scholar 

  148. Bauer R, Fritz H. Pathophysiology of traumatic injury in the developing brain: an introduction and short update. Exp Toxicol Pathol. 2004;56(1–2):65–73.

    Article  PubMed  Google Scholar 

  149. Lang DA, Teasdale GM, Macpherson P, Lawrence A. Diffuse brain swelling after head injury: more often malignant in adults than children? J Neurosurg. 1994;80(4):675–80.

    Article  CAS  PubMed  Google Scholar 

  150. Oakley R, Tharakan B. Vascular hyperpermeability and aging. Aging Dis. 2014;5(2):114–25.

    PubMed  PubMed Central  Google Scholar 

  151. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Yamazaki Y, Baker DJ, Tachibana M, Liu CC, van Deursen JM, Brott TG, et al. Vascular cell senescence contributes to blood-brain barrier breakdown. Stroke. 2016;47(4):1068–77.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  155. Rodríguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience. 2016;323:170–82.

    Article  PubMed  CAS  Google Scholar 

  156. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gilmer LK, Ansari MA, Roberts KN, Scheff SW. Age-related changes in mitochondrial respiration and oxidative damage in the cerebral cortex of the Fischer 344 rat. Mech Ageing Dev. 2010;131(2):133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hukkelhoven CW, Steyerberg EW, Rampen AJ, Farace E, Habbema JD, Marshall LF, et al. Patient age and outcome following severe traumatic brain injury: an analysis of 5600 patients. J Neurosurg. 2003;99(4):666–73.

    Article  PubMed  Google Scholar 

  159. Onyszchuk G, He YY, Berman NE, Brooks WM. Detrimental effects of aging on outcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histological study in mice. J Neurotrauma. 2008;25(2):153–71.

    Article  PubMed  Google Scholar 

  160. Roof RL, Duvdevani R, Braswell L, Stein DG. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp Neurol. 1994;129(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  161. Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res. 2009;175:219–37.

    Article  CAS  PubMed  Google Scholar 

  162. Mannix R, Berglass J, Berkner J, Moleus P, Qiu J, Jantzie LL, et al. Sex differences in the effect of progesterone after controlled cortical impact in adolescent mice: a preliminary study. J Neurosurg. 2014;121(6):1337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Robertson CL, Saraswati M. Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury. J Bioenerg Biomembr. 2015;47(1–2):43–51.

    Article  CAS  PubMed  Google Scholar 

  164. Armstead WM, Riley J, Vavilala MS. Preferential protection of cerebral autoregulation and reduction of hippocampal necrosis with norepinephrine after traumatic brain injury in female piglets. Pediatr Crit Care Med. 2016;17(3):e130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ley EJ, Short SS, Liou DZ, Singer MB, Mirocha J, Melo N, et al. Gender impacts mortality after traumatic brain injury in teenagers. J Trauma Acute Care Surg. 2013;75(4):682–6.

    Article  PubMed  Google Scholar 

  166. Berry C, Ley EJ, Tillou A, Cryer G, Margulies DR, Salim A. The effect of gender on patients with moderate to severe head injuries. J Trauma. 2009;67(5):950–3.

    Article  PubMed  Google Scholar 

  167. Caplan HW, Cox CS, Bedi SS. Do microglia play a role in sex differences in TBI? J Neurosci Res. 2017;95(1–2):509–17.

    Article  CAS  PubMed  Google Scholar 

  168. Slewa-Younan S, van den Berg S, Baguley IJ, Nott M, Cameron ID. Towards an understanding of sex differences in functional outcome following moderate to severe traumatic brain injury: a systematic review. J Neurol Neurosurg Psychiatry. 2008;79(11):1197–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Eranet neuron CNS-aflame consortium (JB) and TRAINS (JB) and TRAIL-Labex ANR Vasc-TBI (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Badaut.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Marilyn E. Morris and Jean-Michel Scherrmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Grande, B., Ichkova, A., Lemarchant, S. et al. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS J 19, 1615–1625 (2017). https://doi.org/10.1208/s12248-017-0123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0123-3

Key words

Navigation