ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Note
Revised

Engaging high school students in neuroscience research -through an e-internship program

[version 2; peer review: 3 approved]
PUBLISHED 29 Mar 2017
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

This article is included in the INCF gateway.

Abstract

In this article, we describe the design and implementation of an e-internship program that BioScience Project offers high school students over the summer. Project topics are in the areas of behavioral neuroscience and brain disorders. All research, teaching, and communication is done online using open access databases and webtools, a learning management system, and Google apps. Students conduct all aspects of a research project from formulating a question to collecting and analyzing the data, to presenting their results in the form of a scientific poster. Results from a pilot study involving fifteen students indicate that students are capable of successfully completing such a project, and benefit both intellectually and professionally from participating in the e-internship program.

Keywords

e-internship, personalized learning, neurogenomics, systems biology, K12, stem

Revised Amendments from Version 1

Title
Based on a suggestion made by an F1000 member we changed the title of the article to reflect the neuroscience research focus of the internship program.
Other major changes made to the manuscript are based on one reviewer’s comments.

Abstract
A sentence was revised to clarify that student comprehension was not formally assessed in this pilot project.
We also specify the exact number of students that participated.

Introduction
We have added a paragraph to the introduction that highlights the benefits of a student/scientist association, internships, and e-learning.  We have added four additional references in support.

Internship Implementation and Project design
We have included additional detail to explain the rationale and contents of the modules.
We have provided more information about the content discussed during and the frequency of the mentoring sessions.

Project design
The project design section has been moved and now appears after the Internship design section and before the database description.

See the authors' detailed response to the review by Byron C. Jones
See the authors' detailed response to the review by Jennifer A. Ufnar
See the authors' detailed response to the review by Christine F. Hohmann

Introduction

Neurogenomics is the study of the systems, networks, and gene interactions that underlie neural processes. Increased functional information from diverse sources available in open access databases, along with specific tools for analysis, enables the integration of these data to gain unique insights (Overall et al., 2015). BioScience Project (www.bioscienceproject.org) offers high school students the opportunity to work as summer interns on research projects in the area of behavioral neuroscience and brain disorders, which includes the analysis of gene expression data using systems and network biology methods (see Schughart & Williams, 2017). This is a voluntary internship available to students regardless of academic performance or institution. Students participate in the program to gain hands on experience and acquire new skills. The projects involve learning how to formulate and test hypotheses, data-mine biological and neuroscience-specific databases, statistical analysis, and data representation and visualization. Students need only a computer with an Internet connection to participate. The projects are flexible, allowing students to work from home on their own schedule. All communication is done via the Internet with an online learning management system (Moodle, https://moodle.com/), Google apps (https://gsuite.google.com/), and video conferencing. At the end of the internship, students communicate their work in a poster, which can be used to leverage their college applications and/or detail their experience to prospective employers. Students also receive certificates of completion. Several strengths of the e-internship program worth noting are: (1) Students are highly interested in topics related to behavioral neuroscience and brain disease; (2) This is shown to be an effective model to introduce early stage students to advanced topics and research methods in neuroscience; (3) Students receive the otherwise-limited opportunity to participate in authentic research projects and work directly with professional scientists; (4) The internship program is scalable, enabling many students to participate; (5) Project results are freely accessible to the scientific community on BioScience Project’s website (www.bioscienceproject.org).

Science outreach programs that connect professional scientists to students and teachers such as “Scientist in the Classroom” (Laursen et al., 2007), “Shadow a Scientist” (Clark et al., 2016) and the “Virtual Scientist” (McCombs et al., 2007) report enhanced student interest in science and an increase in the understanding of science concepts and relevance to real life. The experience also provides an awareness of ongoing research and current methods. Internships bridge theory and practice and are a useful way to supplement and enrich an individual’s educational experience (Ruggiero & Boehm, 2016). The e-internship model extends this opportunity to a broader group of students.

Internship implementation

Recruitment

Recruiting students is mainly done by contacting high school science departments through email and providing information about our organization and the internship opportunity. We include a recruitment poster (Supplementary File 1) and ask that the information be passed along to their students. We launched a two year pilot project that included both private and public institutions around the Boston (MA, USA) area. Schools were selected randomly. Several students from schools not contacted by us learned about the Internship program through word of mouth or an Internet search.

Internship design

The internship program runs for 6 to 8 weeks in July and August. Students may begin sooner if they like. The time commitment varies for each student, but is in the range of 10–15 hours per week. Students proceed at their own pace and can work alone or in a group. There are no deadlines, except to finish projects before the new school year begins. Project completion requires that students profile gene expression data associated with a brain disorder or behavior using a protocol designed by our laboratory and make a scientific-style poster of their work, which includes introduction, methods, results, and discussion sections.

Students are able to choose their topic of study or can select from subjects suggested by us. Project specific materials are provided throughout the internship. These include relevant literature for background information from science magazines (Scientific American and The Scientist), as well as links to news updates from sources such as EurekAlert! (https://www.eurekalert.org/), BBC Science (http://www.bbc.co.uk/science), Neuroscience News (http://neurosciencenews.com/) and YouTube (https://www.youtube.com/).

Students are provided with as much mentoring as they need to complete the internship. Mentoring sessions are done through video conferencing and consist of a walk-through of each database with screen sharing, project discussion, and troubleshooting of problems. Mentoring sessions typically take place weekly and last anywhere from 30 to 90 min. Mentoring is requested and scheduled by email. All instruction and mentoring is provided by the project director, Dr. Anna Delprato. As the internship program grows, additional scientists will be recruited to assist with teaching. Students are not tested and there are no grades assigned. Teaching and communication is done through an online learning platform (Moodle; https://moodle.com/), one on one video conferencing (Skype or Google Hangouts), email, document sharing (Google Docs), and a Google group, which enables students to receive notices and communicate with one another. Google apps are also used for data handling (Google Sheets) and presentation (Google Slides). Students may also use Microsoft Office’s Excel and PowerPoint software for the same purpose.

Project design

The protocol used for profiling gene expression data is broken down into steps so as not to overwhelm the students with too much information at once. Modules which consist of detailed instruction are built around each step of the protocol. The purpose of the module is to provide the students with a detailed reference in addition to the mentoring sessions so that they can work in the databases and with the data independently.

The starting point for all projects involves the identification of brain regions associated with a behavioral process or brain disease, which is based primarily on functional magnetic resonance imaging (fMRI) data. Students find this information through an Internet search with our assistance. Gene expression patterns are then analyzed to identify those genes that are preferentially expressed in these brain areas across all donor brains. For the genes identified in this way, clustering algorithms and gene ontology annotation are used to identify those entries that are directly related to the subject of interest. These genes are then used as hooks to build interaction networks in order to pull out additional functionally relevant genes.

All of the databases and analysis tools are open access. The core set of databases and web tools used in the internship are: The Allen Brain Atlas (gene expression data based on donor brains and correlation analysis; http://brain-map.org/), Venny (Venn diagram generator; http://bioinfogp.cnb.csic.es/tools/venny/), DAVID (Database for Annotation, Visualization and Integrated Discovery; functional annotation, pathway information, and clustering; https://david.ncifcrf.gov/; Huang et al., 2009), PythonAnywhere (statistics, graphing; https://www.pythonanywhere.com) and STRING (network analysis; http://string-db.org/; Szklarczyk et al., 2015). A more detailed description of these are provided in the following sections.

Allen Brain Atlas/Gene Expression

The Allen Brain Atlas combines genomic data with neuroanatomy through the generation of gene expression maps obtained from Affymetrix data (Hawrylycz et al., 2012). The Allen Brain human database contains gene expression data for 6 donor brains. This human database is queried using the differential search function, which enables a search to identify gene expression enrichment in one brain region as compared to another. For example, learning and memory are typically associated with the hippocampus, so in this case the differential search function is used to find genes that have enhanced expression in the hippocampus relative to other regions of the brain. Details on the usage of the differential search function can be found at the Allen Brain site (http://help.brain-map.org/display/humanbrain/Microarray+Data#MicroarrayData-GeneSearch). Students are taught how to interpret Affymetix heatmaps, evaluate gene expression data (fold difference values, error, and threshold cutoff), and use spreadsheet editing, sorting, and graphing functions for the organization and analysis of large datasets.

The cleaned gene sets are then compared by the students to detect common and distinct elements using an online program (Venny) that evaluates lists and generates a Venn diagram as a visual representation. The genes that are common among all donors are then analyzed in DAVID for functional annotation, clustering, and pathway information. Genes that are associated with project relevant themes, such as behavior, nervous system development, and/or specific diseases, are used to build interaction networks, which consist of protein-protein interactions that are supported by multiple lines of evidence, such as experimental, text mining, and co-expression in the STRING database.

The interaction networks are used to identify potential gene candidates that may be involved in the same behavioral process or disease, and are also used to identify network substructures, such as hubs and motifs, which indicate important and possibly functionally related entities. Functional classification is assessed using DAVID to identify interactions that are relevant to the project topic. For an extended analysis, students can use the most pertinent genes extracted from the networks to identify additional candidates that have similar spatial expression profiles in the brain tissue of interest. The correlation analysis is done in the Allen Brain database using the correlation search function (http://help.brain-map.org/display/humanbrain/Microarray+Data#MicroarrayData-CorrelativeSearch).

Finally, a statistical analysis of the gene expression data is performed by the students with Python, using an online Python server, PythonAnywhere, which enables students to run Python scripts from their browser. Students are provided with a general script and are required to modify this for their own datasets. The script returns general statistics, such as standard error, mean, minimum and maximum, variance, and distribution profiles.

Internship outcomes

The internship program has run for two years since 2015. The first year, five students participated and in the second year ten students participated. Student project topics included addiction, learning and memory, Alzheimer’s disease, creativity, and bipolar disorder, among others. Student posters can be viewed at the BioScience Project website (http://www.bioscienceproject.org/student-posters). This year a student also coauthored a published research article with our group, which reports on the identification of genetic factors associated with morphine addiction (Crusio et al., 2016). Upon completion of the internship, students answered survey questions pertaining to the internship content, instruction, and overall experience. The student responses to the survey questions are presented in Table 1 and Table 2. Comments and suggestions provided by the students can be viewed in Supplementary File 2. Based on the student feedback in 2015, the internship instruction was revised for clarity using step-by-step annotated screenshots together with one-on-one tutorials via video conferencing for each database and method.

Table 1. Neuroinformatics Internship Student Survey 2015.

Survey QuestionsResponses
YesNoOther
1. Was the internship content clearly presented?41
2. Was the internship content interesting?5
3. Could you navigate the module easily?41*
4. Did you acquire new skills and knowledge?5
5. Would you recommend this internship to others?5
ExcellentGoodSatisfactory
6. What overall rating would you give this internship?221
7. What overall rating would you give the instructor?41

*“It was a bit confusing in the very beginning, but after a bit of experience it became very easy to use.”

Table 2. Neuroinformatics Internship Student Survey 2016.

Survey QuestionsResponses
YesNoOther
1. Was the internship content clearly presented?82*
2. Was the internship content interesting?10
3. Could you navigate the module easily?10
4. Did you acquire new skills and knowledge?10
5. Would you recommend this internship to others?10
ExcellentGoodSatisfactory
6. What overall rating would you give this internship?451
7. What overall rating would you give the instructor?10

* Comment1: “It varied from step to step, sometimes it was clear and sometimes I was a little confused.” Comment2: “The steps were clearly presented and we had a lot of help through the ones we didn’t understand, but the overarching goal/conceptual understanding of the project was a bit confusing during the steps.”

Conclusions

This e-internship program has been shown to be a useful way of introducing early stage students to advanced topics and research methods in systems biology, which supplements their high school science curriculum and provides them with an opportunity to gain hands on experience. Students are interested in collaborating with scientists on research projects in neuroscience-related topics and they gain both intellectually and professionally from participating in the summer e-internship program. Given the flexibility in both time and procedure, this e-internship program can easily be extended to include more students.

Comments on this article Comments (2)

Version 2
VERSION 2 PUBLISHED 29 Mar 2017
Revised
Version 1
VERSION 1 PUBLISHED 09 Jan 2017
Discussion is closed on this version, please comment on the latest version above.
  • Author Response 23 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    23 Feb 2017
    Author Response
    Thank you for your suggestion. We will consider changing the title in the revised version of the article.
    Competing Interests: No competing interests were disclosed.
  • Reader Comment 22 Feb 2017
    Peter Uetz, Virginia Commonwealth University, USA
    22 Feb 2017
    Reader Comment
    I suggest to change "systems biology" in the title to something like "brain systems biology" or the like, to be more precise.
    Competing Interests: None
  • Discussion is closed on this version, please comment on the latest version above.
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Crusio WE, Rubino C and Delprato A. Engaging high school students in neuroscience research -through an e-internship program [version 2; peer review: 3 approved] F1000Research 2017, 6:20 (https://doi.org/10.12688/f1000research.10570.2)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 2
VERSION 2
PUBLISHED 29 Mar 2017
Revised
Views
10
Cite
Reviewer Report 18 Apr 2017
Jennifer A. Ufnar, Department of Teaching and Learning, Vanderbilt University, Nashville, TN, USA 
Approved
VIEWS 10
I confirm that I have read this submission and believe that I have an ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Ufnar JA. Reviewer Report For: Engaging high school students in neuroscience research -through an e-internship program [version 2; peer review: 3 approved]. F1000Research 2017, 6:20 (https://doi.org/10.5256/f1000research.12180.r21901)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Version 1
VERSION 1
PUBLISHED 09 Jan 2017
Views
29
Cite
Reviewer Report 20 Feb 2017
Jennifer A. Ufnar, Department of Teaching and Learning, Vanderbilt University, Nashville, TN, USA 
Approved with Reservations
VIEWS 29
The article by Anna Delprato describes an interesting way to engage students in an online research program in the neurosciences. This reviewer is interested in the program and the potential impacts and uses of the program for K-12 students. This ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Ufnar JA. Reviewer Report For: Engaging high school students in neuroscience research -through an e-internship program [version 2; peer review: 3 approved]. F1000Research 2017, 6:20 (https://doi.org/10.5256/f1000research.11391.r19554)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 29 Mar 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    29 Mar 2017
    Author Response
    We thank the reviewer for the insightful comments and suggestions. Below we respond to each point of the review. We have submitted an updated version of the article that incorporates ... Continue reading
COMMENTS ON THIS REPORT
  • Author Response 29 Mar 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    29 Mar 2017
    Author Response
    We thank the reviewer for the insightful comments and suggestions. Below we respond to each point of the review. We have submitted an updated version of the article that incorporates ... Continue reading
Views
14
Cite
Reviewer Report 08 Feb 2017
Byron C. Jones, Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA 
Approved
VIEWS 14
The description of the internship program is clear and convincing. One minor issue is with Table 2 -- the ** ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Jones BC. Reviewer Report For: Engaging high school students in neuroscience research -through an e-internship program [version 2; peer review: 3 approved]. F1000Research 2017, 6:20 (https://doi.org/10.5256/f1000research.11391.r19553)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 21 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    21 Feb 2017
    Author Response
    Thank you for reviewing our article. We are seeking funding for student support and program expansion.
    Competing Interests: No competing interests were disclosed.
COMMENTS ON THIS REPORT
  • Author Response 21 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    21 Feb 2017
    Author Response
    Thank you for reviewing our article. We are seeking funding for student support and program expansion.
    Competing Interests: No competing interests were disclosed.
Views
11
Cite
Reviewer Report 08 Feb 2017
Christine F. Hohmann, Department of Biology and RISE Program, Morgan State University, Baltimore, MD, USA 
Approved
VIEWS 11
The paper by Crusio, Rubino and Delprato, appropriately titled: “Engaging high school students in systems biology through an e-internship program”, provides a description of a research education program at the high school level. The authors have developed an online research ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Hohmann CF. Reviewer Report For: Engaging high school students in neuroscience research -through an e-internship program [version 2; peer review: 3 approved]. F1000Research 2017, 6:20 (https://doi.org/10.5256/f1000research.11391.r19850)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 21 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    21 Feb 2017
    Author Response
    Thank you for reviewing our article. We have changed the file format of the students posters to pdf. This has improved the resolution for online viewing.
    Competing Interests: No competing interests were disclosed.
COMMENTS ON THIS REPORT
  • Author Response 21 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    21 Feb 2017
    Author Response
    Thank you for reviewing our article. We have changed the file format of the students posters to pdf. This has improved the resolution for online viewing.
    Competing Interests: No competing interests were disclosed.

Comments on this article Comments (2)

Version 2
VERSION 2 PUBLISHED 29 Mar 2017
Revised
Version 1
VERSION 1 PUBLISHED 09 Jan 2017
Discussion is closed on this version, please comment on the latest version above.
  • Author Response 23 Feb 2017
    Anna Delprato, BioScience Project, Wakefield, USA
    23 Feb 2017
    Author Response
    Thank you for your suggestion. We will consider changing the title in the revised version of the article.
    Competing Interests: No competing interests were disclosed.
  • Reader Comment 22 Feb 2017
    Peter Uetz, Virginia Commonwealth University, USA
    22 Feb 2017
    Reader Comment
    I suggest to change "systems biology" in the title to something like "brain systems biology" or the like, to be more precise.
    Competing Interests: None
  • Discussion is closed on this version, please comment on the latest version above.
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.