Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Research (Published online: 30-11-2014)

22. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management - V. Remya, Naveen Kumar, A. K. Sharma, Dayamon D. Mathew, Mamta Negi, S. K. Maiti, Sameer Shrivastava, Sonal and N. P. Kurade

Veterinary World, 7(11): 1019-1025

 

 

   doi: 10.14202/vetworld.2014.1019-1025

 

V. Remya: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; remyamukund04vet@gmail.com

Naveen Kumar: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; naveen.ivri1961@gmail.com

A. K. Sharma: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; ashok.sharma1010@gmail.com

Dayamon D. Mathew: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; dayamon@gmail.com

Mamta Negi: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; mamtaanegi@gmailcom

S. K. Maiti: Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; maiti_62@rediffmail.com

Sameer Shrivastava: Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; sameer_vet@rediffmail.com

Sonal: Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; sonalvet@gmail.com

N. P. Kurade: Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India; npkurade@yahoo.co.in

 

Received: 04-06-2014, Revised: 19-10-2014, Accepted: 24-10-2014, Published online: 30-11-2014

 

Corresponding author: V. Remya: e-mail: remyamukund04vet@gmail.com



Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care.

Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc) seeded extracellular matrix [ECM]) was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim bladder (FSB). Goat bone marrow-derived cells (G-BMdc) were seeded over this decellularized matrix. Efficacy of this cell matrix construct in wound repair was tested by implanting it over 20 mm2 × 20 mm2 size fullthickness skin wound created over the dorsum of rat. The study was conducted in 16 clinically healthy adult rats of either sex. The animals were randomly divided into 2 equal groups of 8 animals each. In Group I, animal’s wounds were repaired with a cellular FSB matrix. In Group II, wounds were repaired with G-BMdc seeded a cellular FSB matrix. Immune response and efficacy of healing were analyzed.

Results: Quality of healing and immuno tolerance to the biological substitute was significantly better in Group II than Group I.

Conclusion: Seeding with BMdc increases the wound healing potency and modulates the immune response to a significantly negligible level. The BMdc seeded acellular FSB matrix was found to be a novel biomaterial for wound management.

Keywords: biomaterial, decellular, extra cellular matrix, wound.



1. Clark, R.A.F., Ghosh, K. and Tonnesen, M.G. (2007) Tissue engineering for cutaneous wounds. J. Invest. Dermatol., 127: 1018-1029.
http://dx.doi.org/10.1038/sj.jid.5700715
PMid:17435787
 
2. Badylak, S.F. (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell. Dev. Biol., 13(5): 377-383.
http://dx.doi.org/10.1016/S1084952102000940
PMid:12324220
 
3. Bellows, C.F., Albo, D., Berger, D.H. and Awad, S.S. (2007) Abdominal wall repair using human acellular dermis. Am. J. Surg., 194(2): 192-198.
http://dx.doi.org/10.1016/j.amjsurg.2006.11.012
PMid:17618803
 
4. Harth, K.C. and Rosen, M.J. (2009) Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction. Surg. Innov., 16: 324-329.
http://dx.doi.org/10.1177/1553350609353609
PMid:20031943
 
5. Pascual, G., Sotomayor, S., Rodriguez, M., Kohler, B.P. and Bellon, J.M. (2012) Repair of abdominal wall defects with biodegradable laminar prostheses: Polymeric or biological. Plos One, 7(12): 1-11.
http://dx.doi.org/10.1371/journal.pone.0052628
PMid:23285119 PMCid:PMC3528658
 
6. Gulati, A.K. and Cole, G.P. (1994) Immunogenicity and regenerative potential of acellular nerve allograft to repair peripheral nerve in rats and rabbits. Acta Neurochir., 126(2-4): 158-164.
http://dx.doi.org/10.1007/BF01476427
 
7. Kumar, N., Gangwar, A.K., Sharma, A.K., Negi, M., Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S, Maiti, S.K., Devi, K.S., Kumar, V., Ramteke, P.W., Kaarthick, D.T. and Kurade, N.P. (2013) Extraction techniques for the decellularization of rat dermal constructs. Trends Biomater. Artif. Organs., 27: 102-103.
 
8. Gilbert, T.W., Sellaro, T.L. and Badylak, S.F. (2006) Decellularization of tissues and organs. Biomaterials, 27: 3675-3683.
PMid:16519932
 
9. Lee, C.H., Singla, A. and Lee, Y. (2001) Biomedical application of collagen. Int. J. Pharm., 221: 21-22.
http://dx.doi.org/10.1016/S0378-5173(01)00691-3
 
10. Van der Laan, J.S., Lopez, G.P., Van, P.B., Nieuwenhuis, P., Ratner, B.D., Bleichrodt, R.P. and Schakenraad, J.M. (1991) TFE-plasma polymerized dermal sheep collagen for the repair of abdominal wall defects. Int. J. Artif. Organs, 14(10): 661-666.
PMid:1836203
 
11. Dong, S.W., Ying, D.J., Duan, X.J., Xie, Z. and Yu, Z.J., Zhu, C.H., Yang, B and Sun, J.S. (2009) Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing C bfa1. Biosci. Biotechnol. Biochem., 73(10): 2226-2233.
http://dx.doi.org/10.1271/bbb.90329
PMid:19809195
 
12. Cheng, H.L., Loai, Y., Beaumont, M. and Farhat, W.A (2010) The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study. Magn. Reson. Med., 64(2): 341-348.
PMid:20665777
 
13. Boer, U., Lohrenz, A., Klingenberg, M., Pich, A., Haverich, A. and Wilhelmi, M. (2011) The effect of detergent based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials, 32(36): 9730-9737.
http://dx.doi.org/10.1016/j.biomaterials.2011.09.015
PMid:21944468
 
14. Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J. and Ingham, E. (2011) Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J. Biomed. Mater. Res. A., 99(2): 283-294.
http://dx.doi.org/10.1002/jbm.a.33171
PMid:21858917
 
15. Stapleton, T.W., Ingram, J., Fisher, J. and Ingham, E. (2011) Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng. Part. A., 17(1-2): 231-242.
http://dx.doi.org/10.1089/ten.tea.2009.0807
PMid:20695759 PMCid:PMC3011925
 
16. Zhao, Y., Zhang, Z., Wang, J., Yin, P., Zhou, J., Zhen, M., Cui, W., Xu, G., Yang, D. and Liu, Z. (2012) Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow derived mesenchymal stem cells. Artif. Organs., 36(3): 247-255.
http://dx.doi.org/10.1111/j.1525-1594.2011.01343.x
PMid:21899574
 
17. Kumar, V., Kumar, N., Sharma, A.K., Maiti, S.K., Gangwar, A.K., Singh, H., Shrivastava, S., Sonal, S and Rai, R.B. (2012) Acellular buffalo small intestinal submucosa and fish swim bladder for repair of full-thickness skin wounds in rabbit. In proceeding of: 9th World Biomaterials Congress, Chengdu, China. Abstract No.:52. p104.
 
18. Gangwar, A.K., Kumar, N., Sharma, A.K. Devi, S., Negi, M., Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S., Arundeep, P.S., Maiti, S.K., Kumar, V., Kaarthick, D.T., Kurade, N.P. and Singh, R. (2013) Bioengineered acellular dermal matrix for the repair of full thickness skin wounds in rats. Trends Biomater. Artif. Org., 27: 67-80.
 
19. Rose, C., Mandal, A.B. and Joseph, K.T. (1998) Characterization of collagen from the swim bladder of catfish (Tachysurus maculates). Asian Fish Sci., 11: 1-10.
 
20. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S.E. and Ringdén, O. (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol., 57(1): 11-20.
http://dx.doi.org/10.1046/j.1365-3083.2003.01176.x
PMid:12542793
 
21. Kumar, V. (2010) Acellular buffalo small intestinal submucosa and fish swim bladder for the repair of full thickness skin wounds in rabbits. M. V. Sc. Thesis Submitted to Indian Veterinary Research Institute, Deemed University, Izatnagar, Bareilly, Uttar Pradesh, India.
 
22. Boyum, A. (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest., 21: 77-89.
 
23. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193(1): 265-275.
PMid:14907713
 
24. Kruisbeek, A.M. and Shevach, E.M. (2004) Proliferative assays for T cell function. In: Coligan, E., Margulies, D.H., Shevach, E.M. and Strober, W., editors. Current Protocols in Immunology. Unit 3.12. John Wiley, New York. p1-3.
http://dx.doi.org/10.1002/0471142735.im0312s60
PMid:18432927
 
25. Seddon, A.M., Curnow, P. and Booth, P.J. (2004) Membrane proteins, lipids and detergents: Not just a soap opera. Biochim. Biophys. Acta, 1666(1-2): 105-117.
http://dx.doi.org/10.1016/j.bbamem.2004.04.011
PMid:15519311
 
26. Woods, T. and Gratzer, P.F. (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials, 26(35): 7339-7349.
http://dx.doi.org/10.1016/j.biomaterials.2005.05.066
PMid:16023194
 
27. Gangwar, A.K., Sharma, A.K., Kumar, N. Maiti, S.K. Gupta, O.P. Goswami T.K. and Singh, R. (2006) Acellular dermal graft for repair of abdominal wall defects in rabbits. J. S. Afr. Vet. Assoc., 77(2): 79-85.
http://dx.doi.org/10.4102/jsava.v77i2.349
PMid:17120624
 
28. Purohit, S. (2008) Biocompatibility testing of acellular dermal grafts in a rabbit model: An in-vitro and in-vivo study. Ph.D. Thesis Submitted to Deemed University, I.V.R.I., Izatnagar, Bareilly (UP).
 
29. Kaarthick, D.T. (2011) Repair of cutaneous wounds using acellular diaphragm and pericardium of buffalo origin seeded with in-vitro cultured mouse embryonic fibroblasts cells in rat model. M.V.Sc. Thesis Submitted to Deemed University, I.V.R.I., Izatnagar, Bareilly (UP).
 
30. Yannas, I.V. (2005) Similarities and differences between induced organ regeneration in adults and early fetal regeneration. J. R. Soc. Interface, 2(5): 403-417.
http://dx.doi.org/10.1098/rsif.2005.0062
PMid:16849201 PMCid:PMC1618502
 
31. Blanc, K.L., Fibbe, W., Frassoni, F., Locatelli, F. and Ringdén, O. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419): 1439-1444.
http://dx.doi.org/10.1016/S0140-6736(04)16104-7
 
32. Ryan, M. Barry, P.F., Murphy, M.J. and Mahon, P.B. (2005) Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm., 2: 8.
http://dx.doi.org/10.1186/1476-9255-2-8
PMid:16045800 PMCid:PMC1215510