Open Access
Research (Published online: 30-12-2017)
19. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell
A. K. Sahoo, J. K. Das and S. Nayak
Veterinary World, 10(12): 1533-1541

A. K. Sahoo: Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India.
J. K. Das: Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India.
S. Nayak: Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India.

doi: 10.14202/vetworld.2017.1533-1541

Share this article on [Facebook] [LinkedIn]

Article history: Received: 03-08-2017, Accepted: 04-12-2017, Published online: 30-12-2017

Corresponding author: A. K. Sahoo

E-mail: aks76vet@gmail.com

Citation: Sahoo AK, Das JK, Nayak S (2017) Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell, Veterinary World, 10(12): 1533-1541.
Abstract

Aim: In this study, the canine endometrium tissue is characterized for its stem cell properties such as adherence to tissue culture plate (plasticity), short population doubling time, serial clonal passaging, long-term culturing properties, stem cell marker expression, and multilineage differentiation potential.

Materials and Methods: The present work describes a novel isolation protocol for obtaining mesenchymal stem cells from the uterine endometrium and is compared with cells derived from umbilical cord matrix as a positive control. These cells are clonogenic, can undergo several population doublings in vitro, and can be differentiated to the osteocytes in mature mesenchymal tissues when grown in osteogenic differentiation media as detected by Alizarin Red-S staining.

Results: It is reported for the first time that the cells derived from the canine endometrium (e-multipotent stem cells [MSCs]) were able to differentiate into a heterologous cell type: Osteocytes, thus demonstrating the presence of MSCs. Thus, the endometrium may be told as a potential source of MSCs which can be used for various therapeutic purposes.

Conclusion: The endometrium can be used as a potential source of MSCs, which can be used for various therapeutic purposes.

Keywords: Alizarin Red-S staining, endometrium, mesenchymal stem cell, multipotent stem cells marker, osteogenic differentiation media.

References

1. Wagers, A.J. and Weissman, I.L. (2004) Plasticity of adult stem cells. Cell, 116: 639-648. [Crossref]

2. Ai, J., Ebrahimi, S., Khoshzaban, A., Jafarzadeh Kashi T.S. and Mehrabani, D. (2012) Tissue engineering using human mineralized bone xenograft and bone marrow mesenchymal stem cells allograft in healing of tibial fracture of experimental rabbit model. Iran. Red Crescent Med. J., 14: 96-103. [PubMed] [PMC]

3. Hosseinkhani, M., Mehrabani, D., Karimfar, M.H., Bakhtiyari, S., Manafi, A. and Shirazi, R. (2014) Tissue engineered scaffolds in regenerative medicine. World J. Plast Surg., 3: 3-7. [PubMed] [PMC]

4. Fayazi, M., Salehnia, M. and Ziaei, S. (2015) Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and gliallike cells. In vitro Cell. Dev. Biol. Anim., 51(4): 408-414. [Crossref] [PubMed]

5. Friedenstein, A.J., Chailakhyan, R.K. and Gerasimov, U.V. (1987) Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet., 20: 263-272. [Crossref]

6. Lee, O.K., Kuo, T.K., Chen, W.M., Lee, K.D., Hsieh, S.L and Chen, T.H. (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103: 1669-1675. [Crossref] [PubMed]

7. Rada, T., Reis, R.L. and Gomes, M.E. (2011) Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell Rev. Rep., 7: 64-76. [Crossref] [PubMed]

8. Perin, L., Giuliani, S., Jin, D., Sedrakyan, S., Carraro, G., Habibian, R., Warburton, D., Atala, A. and De Filippo, R.E. (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif., 40: 936-948. [Crossref] [PubMed]

9. Park, S.B., Seo, M.S., Kim, H.S. and Kang, K.S. (2012) Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. PLoS One, 7(9), e44693. [Crossref]

10. Mead, L.E., Prater, D., Yoder, M.C. and Ingram, D.A. (2008) Isolation and characterization of endothelial progenitor cells from human blood. Curr. Protoc. Stem Cell Biol., 2(1):1-27. [Crossref]

11. Mehrabani, D., Rahmanifar, F., Mellinejad, M., Tamadon, A., Dianatpour, M., Zare, S. and Ghobadi, F. (2015) Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comp. Clin. Pathol., 24(5): 1159-1164. [Crossref]

12. Tsuji, S., Yoshimoto, M., Takahashi, K., Noda, Y., Nakahata, T. and Heike, T. (2008) Side population cells contribute to the genesis of human endometrium. Fertil. Steril., 90: 1528-1537. [Crossref] [PubMed]

13. Cervello, I., Martinez-Conejero, J.A., Horcajadas, J.A., Pellicer, A. and Simmon, C. (2007) Identification, characterization and co-localization of label retaining cell population in mouse endometrium with typical undifferentiated markers. Hum. Reprod., 22: 45-51. [Crossref] [PubMed]

14. Johnson, G.A., Burghardt, R.C., Newton, G.R., Bazer, F.W. and Spencer, T.E. (1999) Development and characterization of immortalized ovine endometrial cell lines. Biol. Reprod., 61: 1324-1330. [Crossref] [PubMed]

15. Cesaris, V.D., Grolli, S., Bresciani, C., Conti, V., Basini, G., Parmigiani, E. and Bigliardi, E. (2016) Isolation, proliferation and characterization of endometrial canine stem cells. Reprod. Domest. Anim., 52: 235-242. [Crossref] [PubMed]

16. Rink, B., Amilon, K.R., Esteves, C.L., French, H.M., Watson, E., Aurich, E. and Donadeu, F.X. (2017) Isolation and characterization of equine endometrial mesenchymal stromal cells. Stem Cell Res. Ther., 8: 166. [Crossref] [PubMed] [PMC]

17. Gargett, C.E., Schwab, K.E., Zillwood, R.M., Nguyen, R.T. and Wu, D. (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod., 80: 1136-1145. [Crossref] [PubMed] [PMC]

18. Patel, A.N., Park, E., Kuzman, M., Benetti, F., Silva, J.F. and Allickson, J.G. (2008) Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation. Cell Transplant., 17: 303-311. [Crossref]

19. Fayazi, M., Salehnia, M. and Ziaei, S. (2016) Characteristics of human endometrial stem cells in tissue and isolated cultured cells: An immunohistochemical aspect. Iran. Biomed. J., 20(2): 109-116. [PubMed] [PMC]

20. Seo, M.S., Jeong, Y.H., Park, J.R., Park, S.B., Rho, K.H., Kim, H.S., Yu, K.R., Lee, S.H., Jung, J.W., Lee, Y.S. and Kang, K.S. (2009) Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. J. Vet. Sci., 10: 181-187. [Crossref] [PubMed] [PMC]

21. Dominici, M., Le, B.K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8: 315-317. [Crossref] [PubMed]

22. Mahla, R.S. (2016) stem cells applications in regenerative medicine and disease therapeuticsm. Int. J. Cell Biol., 2016: Article ID: 6940283, 24.

23. Mead, B., Berry, M., Logan, A., Scott, R.A.H., Leadbeater, W. and Scheven. B.A. (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res., 14: 243-257. [Crossref] [PubMed] [PMC]

24. Verdi, J., Tan, A., Shoae-Hassani, A. and Seifalian, A.M. (2014) Endometrial stem cells in regenerative medicine. J. Biol. Eng., 8: 20. [Crossref] [PubMed] [PMC]