Eur. J. Entomol. 117: 226-234, 2020 | DOI: 10.14411/eje.2020.024

Using sentinel prey to assess predation pressure from terrestrial predators in water-filled tree holesOriginal article

Martin M. GOSSNER1, Elena GAZZEA2, Valeriia DIEDUS3, Marlotte JONKER4,5, Mykola YAREMCHUK3
1 Forest Entomology, Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland; e-mail: martin.gossner@wsl.ch
2 Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020 Legnaro (PD), Italy; e-mail: e.gazzea@gmail.com
3 Department of Biology, Uzhhorod National University, Voloshyna 32, 88000 Uzhhorod, Ukraine; e-mails: valeriia.dedus@gmail.com, kolya.yaremchuk.1995@mail.ru
4 University of Freiburg, Chair of Wildlife Ecology and Management, Tennenbacher Str. 4, D-79106 Freiburg i. Br., Germany; e-mail: marlot.jonker@gmail.com
5 Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestr. 4, D-79100 Freiburg i. Br., Germany

Tree-related microhabitats are important for forest biodiversity. Water-filled tree holes are one such microhabitat and can be abundant in temperate forests. The arthropod community in this microhabitat not only contribute to forest biodiversity but also provides food for terrestrial predators such as arthropods, small mammals and birds. The extent of the threat of attack from terrestrial predators on insect larvae in this microhabitat, however, is poorly known. To measure predation in this microhabitat, we produced fake prey resembling insect larvae using white plasticine and exposed them at the aquatic-terrestrial habitat interface. We recorded: (1) which predators attacked the fake larvae, (2) the predation probability on the fake larvae after two days and after two weeks and (3) whether predation probability on fake larvae differed between managed and unmanaged forest zones in one of the last primeval beech forests, the Uholka division of the Carpathian Biosphere Reserve in the Ukrainian Carpathians. By addressing these questions, we aimed to quantify the predation pressure of terrestrial predators on insect larvae in tree-holes. The probability that a fake larva in a tree hole was attacked by predators ranged between 25-58% (95% CI) after two days and between 76-96% (95% CI) after two weeks. Overall, the highest attack rates were recorded for small mammals, followed by arthropods and birds. Arthropods took longer to detect potential prey items than small mammals and birds, and they were the only group that showed significant differences in attack rates between forest zones (unmanaged > managed). This study revealed that sentinel prey might be a suitable method for measuring the predation pressure from terrestrial predators on insect larvae in water-filled tree holes.

Keywords: Predation, artificial prey, dendrotelm, dummy larvae, forest, insect larvae, microcosms, tree-related microhabitats

Received: February 2, 2020; Revised: April 16, 2020; Accepted: April 16, 2020; Published online: April 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
GOSSNER, M.M., GAZZEA, E., DIEDUS, V., JONKER, M., & YAREMCHUK, M. (2020). Using sentinel prey to assess predation pressure from terrestrial predators in water-filled tree holes. EJE117, Article 226-234. https://doi.org/10.14411/eje.2020.024
Download citation

References

  1. Adamík P. 2004: Foraging ecology of two bark foraging passerine birds in an old-growth temperate forest. - Ornis Fenn. 81: 13-22.
  2. Boetzl F.A., Konle A. & Krauss J. 2020: Aphid cards - Useful model for assessing predation rates or bias prone nonsense? - J. Appl. Entomol. 144: 74-80. Go to original source...
  3. Brahma S.K. & Starre H. 1976: Studies on biosynthesis of soluble lens crystallin antigens in the chick by isoelectric focusing in thin-layer polyacrylamide gel. - Exp. Cell Res. 97: 175-183. Go to original source...
  4. Bütler R., Lachat T., Larrieu L. & Paillet Y. 2013: Habitat trees: key elements for forest biodiversity. In Kraus D. & Krumm F. (eds): Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity. European Forest Institute, Freiburg, pp. 84-91.
  5. Castagneyrol B., Correcher E.V., Dobbertin M.K. & Gossner M. 2018: Predation Assessment on Fake Caterpillars and Leaf Sampling: Protocol for Partner Schools. URL: https://www.protocols.io/view/predation-assessment-on-fake-caterpillars-and-leaf-42pgydn
  6. Castagneyrol B., Valdés-Correcher E., Bourdin A., Barbaro L., Bouriaud O., Branco M., Csóka G., Duduman M.-L., Dulaurent A.-M., Eötvös C.B. et al. 2020: Can school children support ecological research? Lessons from the Oak Bodyguard Citizen Science Project. - Citizen Sci. Theor. Practic. 5(1): 10, 11 pp. Go to original source...
  7. Chao A. & Jost L. 2012: Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. - Ecology 93: 2533-2547. Go to original source...
  8. Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K. & Ellison A.M. 2014: Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. - Ecol. Monogr. 84: 45-67. Go to original source...
  9. Chumak V., Obrist M.K., Moretti M. & Duelli P. 2015: Arthropod diversity in pristine vs. managed beech forests in Transcarpathia (Western Ukraine). - Global Ecol. Conserv. 3: 72-82. Go to original source...
  10. Church S.C., Bennett A.T.D., Cuthill I.C. & Partridge J.C. 1998: Ultraviolet cues affect the foraging behaviour of blue tits. - Proc. R. Soc. Lond. (B) 265: 1509-1514. Go to original source...
  11. Colwell R.K., Chao A., Gotelli N.J., Lin S.Y., Mao C.X., Chazdon R.L. & Longino J.T. 2012: Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. - J. Plant Ecol. 5: 3-21. Go to original source...
  12. Commarmot B., Brändli U.-B., Hamor F. & Lavnyy V. (eds) 2013: Inventory of the Largest Primeval Beech Forest in Europe. A Swiss-Ukrainian Scientific Adventure. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, and Ukrainian National Forestry University, L'viv, 69 pp.
  13. Cronin T.W., Johnsen S., Marshall N.J. & Warrant E.J. 2014: Visual Ecology. Princeton University Press, Princeton, NJ, 432 pp. Go to original source...
  14. Doerfler I., Muller J., Gossner M.M., Hofner B. & Weisser W.W. 2017: Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. - For. Ecol. Manag. 400: 607-620. Go to original source...
  15. Ferrante M., Barone G., Kiss M., Bozóné-Borbáth E. & Lövei G.L. 2017a: Ground-level predation on artificial caterpillars indicates no enemy-free time for lepidopteran larvae. - Commun. Ecol. 18: 280-286. Go to original source...
  16. Ferrante M., Barone G. & Lövei G.L. 2017b: The carabid Pterostichus melanarius uses chemical cues for opportunistic predation and saprophagy but not for finding healthy prey. - BioControl 62: 741-747. Go to original source...
  17. Gossner M.M. 2018: A three year study of the phenology of insect larvae (Coleoptera, Diptera) in water-filled tree holes in the canopy of a beech tree. - Eur. J. Entomol. 115: 524-534. Go to original source...
  18. Gossner M.M., Lade P., Rohland A., Sichardt N., Kahl T., Bauhus J., Weisser W.W. & Petermann J.S. 2016: Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry. - J. Anim. Ecol. 85: 213-226. Go to original source...
  19. Harrison X.A. 2015: A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology and evolution. - PeerJ 3: e1114, 17 pp. Go to original source...
  20. Hertzog L.R., Ebeling A., Weisser W.W. & Meyer S.T. 2017: Plant diversity increases predation by ground-dwelling invertebrate predators. - Ecosphere 8(11): e01990, 14 pp. Go to original source...
  21. Hill M.O. 1973: Diversity and evenness: a unifying notation and its consequences. - Ecology 54: 427-432. Go to original source...
  22. Holmes R.T. & Schultz J.C. 1988: Food availability for forest birds - effects of prey distribution and abundance on bird foraging. - Can. J. Zool. 66: 720-728. Go to original source...
  23. Howe A., Lovei G.L. & Nachman G. 2009: Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. - Entomol. Exp. Appl. 131: 325-329. Go to original source...
  24. Hsieh T.C., Ma K.H. & Chao A. 2014: iNEXT: iNterpolation and EXTrapolation for Species Diversity. R Package Version 2.0. URL: http://chao.stat.nthu.edu.tw/blog/software-download.
  25. Jost L. 2006: Entropy and diversity. - Oikos 113: 363-375. Go to original source...
  26. Kielty J.P., Allen-Williams L.J., Underwood N. & Eastwood E.A. 1996: Behavioral responses of three species of ground beetle (Coleoptera: Carabidae) to olfactory cues associated with prey and habitat. - J. Insect Behav. 9: 237-250. Go to original source...
  27. Kitching R.L. 1971: An ecological study of water-filled tree-holes and their position in the woodland ecosystem. - J. Anim. Ecol. 40: 281-302. Go to original source...
  28. Kitching R.L. 2000: Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge University Press, Cambridge, 429 pp. Go to original source...
  29. Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2017: lmerTest Package: Tests in Linear Mixed Effects Models. - J. Stat. Softw. 82(13): 1-26. Go to original source...
  30. Lange M., Türke M., Pa¹aliæ E., Boch S., Hessenmöller D., Müller J., Prati D., Socher S.A., Fischer M., Weisser W.W. et al. 2014: Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. - For. Ecol. Manag. 329: 166-176. Go to original source...
  31. Larrieu L., Paillet Y., Winter S., Butler R., Kraus D., Krumm F., Lachat T., Michel A.K., Regnery B. & Vandekerkhove K. 2018: Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. - Ecol. Indic. 84: 194-207. Go to original source...
  32. Leidinger J.L.G., Gossner M.M., Weisser W.W., Koch C., Cayllahua Z.L.R., Podgaiski L.R., Duarte M.M., Araujo A.S.F., Overbeck G.E., Hermann J.M. et al. 2017: Historical and recent land use affects ecosystem functions in subtropical grasslands in Brazil. - Ecosphere 8(12): e02032, 20 pp. Go to original source...
  33. Lenth R. 2020: emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.5. URL: https://CRAN.R-project.org/package=emmeans.
  34. Lövei G.L. & Ferrante M. 2017: A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. - Insect Sci. 24: 528-542. Go to original source...
  35. Lövei G.L. & Sunderland K.D. 1996: Ecology and behavior of ground beetles (Coleoptera: Carabidae). - Annu. Rev. Entomol. 41: 231-256. Go to original source...
  36. Low P.A., Sam K., McArthur C., Posa M.R.C. & Hochuli D.F. 2014: Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. - Entomol. Exp. Appl. 152: 120-126. Go to original source...
  37. Mansion-Vaquié A., Ferrante M., Cook S.M., Pell J.K. & Lövei G.L. 2017: Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum aestivum). - J. Appl. Entomol. 141: 600-611. Go to original source...
  38. Mantyla E., Alessio G.A., Blande J.D., Heijari J., Holopainen J.K., Laaksonen T., Piirtola P. & Klemola T. 2008: From plants to birds: higher avian predation rates in trees responding to insect herbivory. - PLoS ONE 3(7): e2832, 8 pp. Go to original source...
  39. Meyer S.T., Leidinger J.L.G., Gossner M.M. & Weisser W.W. 2017: Handbook of Field Protocols for Using REFA Methods to Approximate Ecosystem Functions. Version 1.0. Terrestrial Ecology Research Group, Technical University Munich, 19 pp.
  40. Meyer S.T., Heuss L., Feldhaar H., Weisser W.W. & Gossner M.M. 2019: Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. - Agric. Ecosyst. Environ. 270: 84-92. Go to original source...
  41. Michel A.K. & Winter S. 2009: Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, USA. - For. Ecol. Manag. 257: 1453-1464. Go to original source...
  42. Müller J., Jarzabek-Müller A., Bussler H. & Gossner M.M. 2014: Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. - Anim. Conserv. 17: 154-162. Go to original source...
  43. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P. et al. 2019: vegan: Community Ecology Package. R package version 2.5-5. URL: https://CRAN.R-project.org/package=vegan.
  44. Paillet Y., Berges L., Hjalten J., Odor P., Avon C., Bernhardt-Romermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U. et al. 2010: Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. - Conserv. Biol. 24: 101-112. Go to original source...
  45. Petermann J.S., Rohland A., Sichardt N., Lade P., Guidetti B., Weisser W.W. & Gossner M.M. 2016: Forest management intensity affects aquatic communities in artificial tree holes. - PLoS ONE 11(5): e0155549, 22 pp. Go to original source...
  46. Petermann J.S., Roberts A.L., Hemmerling C., Bajerski F., Pascual J., Overmann J., Weisser W.W., Ruess L. & Gossner M.M. 2020: Direct and indirect effects of forest management on tree-hole inhabiting aquatic organisms and their functional traits. - Sci. Total Environ. 704: 135418, 13 pp. Go to original source...
  47. Pohl G.R., Langor D.W. & Spence J.R. 2007: Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. - Biol. Conserv. 137: 294-307. Go to original source...
  48. R Core Team 2019: R: A Language and Environment for Statistical Computing, Version 3.6.0. R Foundation for Statistical Computing.
  49. Romero G.Q., Goncalves-Souza T., Kratina P., Marino N.A.C., Petry W.K., Sobral-Souza T. & Roslin T. 2018: Global predation pressure redistribution under future climate change. - Nature Climate Change 8: 1087-1091. Go to original source...
  50. Roslin T., Hardwick B., Novotny V., Petry W.K., Andrew N.R., Asmus A., Barrio I.C., Basset Y., Boesing A.L., Bonebrake T.C. et al. 2017: Higher predation risk for insect prey at low latitudes and elevations. - Science 356: 742-744. Go to original source...
  51. Rößler D.C., Pröhl H. & Lötters S. 2018: The future of clay model studies. - BMC Zoology 3(1): 6, 5 pp. Go to original source...
  52. Solovyeva E. 2015: Seasonal and Diel Dynamics of Predation in a German Grassland. Technische Universität München, 44 pp.
  53. Vorobyev M., Osorio D., Bennett A.T.D., Marshall N.J. & Cuthill I.C. 1998: Tetrachromacy, oil droplets and bird plumage colours. - J. Comp. Physiol. (A) 183: 621-633. Go to original source...
  54. Wheater C.P. 1989: Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). - J. Zool. 218: 171-185. Go to original source...
  55. Zou Y., de Kraker J., Bianchi F.J.J.A., van Telgen M.D., Xiao H. & van der Werf W. 2017: Video monitoring of brown planthopper predation in rice shows flaws of sentinel methods. - Scientific Reports 7(1): 42210, 9 pp. Go to original source...
  56. Zvereva E.L., Castagneyrol B., Cornelissen T., Forsman A., Hernandez-Aguero J.A., Klemola T., Paolucci L., Polo V., Salinas N., Theron K.J. et al. 2019: Opposite latitudinal patterns for bird and arthropod predation revealed in experiments with differently colored artificial prey. - Ecol. Evol. 9: 14273-14285. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.