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Abstract
Previously we generated tolerance relations from the distance of objects.

In this paper the situation is reversed: from any tolerance relation we generate
a 2D representation in a such a way that the nodes of similar objects are close,
while the nodes of different objects are far from each other. This placement
is inspired by physics, and the location of the objects changes dynamically
with the changes of the relation. As each undirected graph could be treated
as a tolerance relation, results can be used widely.

1. Introduction

One of the main tools of data mining is cluster analysis. Here the set of objects
are grouped in such a way, that the objects in the same group are more similar
to each other than to those which are in other groups. Usually, the similarity
and dissimilarity is based on the numbers describing the objects. But there are
cases, where the objects cannot be described with numbers. Think of humans for
example. It is hard to detail people by numbers, but we judge the similarity of
persons, e.g. parents and children. Of course these opinions may vary, some can
treat the father and its son as similar, while others treat them dissimilar.

If we want to formulate similarity and dissimilarity using mathematics, we need
a tolerance relation. If this relation holds for two objects, we say that they are
similar; and if this relation does not hold, we say that they are dissimilar. Of
course, each object is similar to itself, so the relation is reflexive, and it is easy
to show that it is symmetric too. However, we cannot go much further, e.g. the
transitivity does not necessarily hold. If we take a human and a mouse, then due
to their inner structures they are similar, this is reason why mice are used at drug
experiments. Similarly, a human and a Paris doll are similar due to their shapes,
this is the reason why dolls are used in show-windows. But there is no similarity
between a mouse and a doll.

Clustering based on tolerance relation was introduced by Bansal (who gave a
rough solution to it too) in [5] and named as correlation clustering, but Zahn drew
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Figure 1: Tolerance relation based on GCD.

up this question from a mathematical point of view several years before in [7].
The authors gave several approximative solving methods for correlation clustering
[2, 3, 4].

At presenting these solving methods, visualizing the tolerance relation proved
problematic. We used ad hoc solutions, but it was only partially successful. It
took too much human input, and it made it easy to make mistakes. Let us see a
problem, that can be formulated easily: we treat two natural numbers similar, if
their greatest common divisor is bigger than 1. And we treat them dissimilar, if
their greatest common divisor is 1. The analysis of this problem and its surprising
solution can be found in [1].

If we take this relation on numbers 1, 2, . . . , 10, we can construct the picture
on the left in Fig. 1. Here the circles representing the numbers are positioned on
a circle, to make it easy to connect the numbers. In this picture the similarity is
denoted by solid lines, and the dissimilarity by dashed ones. This picture is trans-
parent, but imagine a similar picture denoting the tolerance relation of numbers
1, 2, . . . , 100! Why not leave out the dashed lines? The picture on right in Fig. 1
shows only the similarities. It is slightly more understandable, but it is hard to see
the nexus. If we reposition the numbers, everything becomes clearer. The numbers
on the left on the circle have no similarities on the picture on the left of Fig. 2, and
we can easily discover the groups 2-4-6-8-10, 3-6-9, 5-10. If we dispose of the circle,
the structure could become even clearer. The software yEd produced the picture
in Fig. 2 on the right.

Numbers are easy to compare. However it is not certain that 2 random objects
are comparable. Or they are comparable, but nobody compared them yet. Hence
the relation can be partial. This means that we have three cases: similar-relation
holds, dissimilar-relation does not hold, unknown-relation undefined. We can visu-
alize this with three colors, or three types of lines. If we do not draw the lines for
unknown relations, then the solid and dashed lines are enough.

In the popular graph visualization methods (force directed graph) edges are
modeled by springs, and the nodes are electrically charged particles. In these
methods the similarity (the edge between two nodes) is handled with springs, and
the dissimilarity (the absence of the edge between two nodes) is handled with
electricity. The graphs visualized with these methods are sparse graphs, i.e. the
number of edges is a linear function of the number of nodes.
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Figure 2: Repositioned tolerance relation of GCD

In our case we use three different kinds of springs according to the three different
values of the partial tolerance relation. With these three values the graph of this
relation is a dense one (all pairs of nodes are somehow connected), i.e. the the
number of edges is a quadratic function of the number of nodes.

The structure of the article is the following: in the next section we present the
physical background. In Section 3 we demonstrate our method by arranging the
nodes of some specific relation. Finally, we conclude our results, and list our future
research directions.

2. Metaphor from physics

We have used physical metaphors to solve the problem of correlation clustering,
where similar objects attract each other and dissimilar objects repulse each other.
We use the same here, but we do not group the objects, but arrange them on the
plane (or in space). Our requirements are:

• similar objects get close, and

• dissimilar objects get far from each other.

Néda at al. presented a model using electric particles to solve the problem of
correlation clustering in [6]. In this model, the particles could move on a circle
based on the superposition of the forces acting on the particle.

As we wrote before, we use imaginary springs. Each node of the graph moves
by the superposition of the forces of its springs. To simplify the problem in this
section we use total tolerance relations, i.e. any pair of objects are comparable
(similar or dissimilar). To get a suitable location for each of our objects, we have
the following constraints:

• we do not like, if some object hide the others, so we fix an optimal distance
(c) for similar objects.
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Figure 3: Spring functions

• to get a finite picture, we determine an optimal distance (C) for dissimilar
objects.

We can translate this for springs: we have short springs for similar objects, and
long springs for dissimilar objects. By Hooke’s law, the force needed to extend or
compress a spring by some distance d is proportional to that distance: F = kd.

Some placement of the objects can be treated as a network of these short and
long springs. If two similar object (connected by a short spring) are closer than c,
then they repulse, and if they are farther than c then they attract each other. For
the long springs the same hold, but with C instead of c, as Fig. 3 shows. Therefore
we introduce two functions: f(d) = (c− |d|) and f ′(d) = (C − |d|), where d is the
(distance) vector between two objects.

We use the periodic (sinusoidal) motion of a mass on a spring. We want to get
a location of objects and not a motion, so we need some attenuation, a negative
feedback. After some trial, we found that the cube of the distance is in some sense
similar to the Coulomb’s rule. Finally the resultant is the superposition of the
forces:

Fi =
∑

j

f(dij)dij

|dij|3
+

∑

l

f ′(dil)dil

|dil|3
(2.1)

here the first part is summing for the objects similar, and the second part is for
the objects dissimilar to object i. Our attenuation has a disadvantage, at small
distances dij we may get very big numbers. But it has a great advantage: the
system easily gets close to the equilibrium.

The authors in general work with partial relations, where it is not necessary to
have a relation (or it is not known) between two objects. As we have no constraints
on the unrelated objects, they can be at any distance from each other, so they can
be positioned at the same place and partially or totally hide each other, or they
can be very far from each other, so the picture can become very big. To solve these
problems, we introduce a new spring function f̂ for the third type of springs (used
for undefined values). This function is similar to the modified f ′, but the optimal
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distance is the interval [c, C]. If d < c then f̂(d) > 0, and if d > C, then f̂(d) < 0,
i.e. for small distances it repulses and for big distances it attracts.

3. Our results

After presenting the algorithm and its background, it is time to show it in practice.
The algorithm can be downloaded from:
https://github.com/aszalosl/visualize_tolerance
We show the resulting image for some simple, but typical tolerance relation. Let
us start with the snake, where adjacent objects are similar, and the others are
dissimilar. We could think that the result is a straight line. Although the left side
of Fig. 4 shows that this theory does not hold. If the dissimilar objects get too
far from each other, then they attract, so we get an arch. In case of a non-defined
relation for non-adjacent objects, we get a different image, because these objects
do not repulse each other, so the snake can move in any directions, as right side of
Fig. 4 shows.
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Figure 4: Total and partial snake.

Let us see some total trees! Here each non-leaf node has exactly three successors.
Fig. 5 shows them. In the first two pictures the non-adjacent nodes are dissimilar,
and in the last one the non-adjacent nodes are unrelated. The tree in the left is
totally symmetric (if we omit the difference of the size of nodes according to one
and two digits). But not every run gives such a nice picture. The middle one was
generated with the same parameters as the left one, but the nodes 8 and 13 got
to the wrong place at the beginning, and since this layout is stable, these nodes
cannot escape. On the last picture the non-adjacent nodes, since unrelated, do
not need to get far from the other nodes, e.g. nodes 3 and 4 comply the minimal
distance constraint, so they are in stable state.

Of course the shapes of these pictures can be formed by changing the values of
parameters c, C and C ′. We tested several combinations, to get specious pictures,
e.g. in case of Fig. 6. Here, we presented the GCD relation, but did not connect
the similar nodes. From the numbers the reader can reconstruct these lines. The
result of the correlation clustering for a few nodes gives a partition where each
prime number (plus the 1) has a cluster, and each number gets into its smallest
prime divisor’s cluster. Although we do not like the collision of nodes (when they
partly hide each other), but in this case it clarifies the picture.
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Figure 5: Total trees.

In the middle of the picture are the even numbers. On the right are the multi-
plies of three. 5 is just below 25 (we know it from the data of the image), as 7 is
below 49. As the multiplicity of the divisors is not counted, the power of primes get
to almost the same position (as 5 and 7 have shown). On the edge of the picture
are the large prime numbers, because they differ from every other number, and as
they dissimilar to each other, they are positioned uniformly. It is worth to examine
the subtleties of the picture: 35 is positioned between the numbers of clusters of 5
and 7, but it is slightly moved towards the even numbers, because there are eight
similar number (five numbers are divisible by five and three are divisible by seven),
and three similar number in the cluster of 3. Similarly the number 50 is slightly
moved towards the numbers of cluster of 5 and the number 48 towards the numbers
of cluster of 3. By zooming the picture we could explore other subtleties, too.
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Figure 6: Visualization of the relation GCD.

Finally let us consider a picture which does not use abstract concepts of number
theory, but comes from real life. Fig. 7 denotes the members of two departments.
We treat two researchers as similar, if they are co-authors, and dissimilar if there is
no such third person who is co-author to both. Of course this is a partial tolerance
relation, because if A-B and B-C are pairwise similar, but A and C are not similar,
then we cannot say that they are dissimilar according to the definition. Numbers
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1-10 and 11-19 denote the members of the departments, respectively. The center
of the picture is empty, hence the research areas are orthogonal. The numbers
of the second department have higher densities, so their publication is stricter
in the same themes mostly by the same co-authors. The numbers of the second
department can be grouped into three clusters, and there are not many relations
between these clusters.

Researchers 5, 6, 9 and 13 usually publish alone or with external colleagues,
hence it is no wonder that they are alone in the picture. Researchers 1, 2, 7 and
8 wrote a common article, so they construct a strong core. As they publish with
other authors too; they are positioned more widely on the picture according to the
repulsion of other co-authors. From this group 1 and 2 are the only co-authors of
4. Moreover 4 is the regular co-author of 10 and has no other co-author. Hence
7 and 8 repulse 10, who gets far from 4, and the attraction of 10 moves 4 away
from its other co-authors. In case of the other department, there is an attraction
between 12 and 19 (they moved toward each other), but the chain of co-authors
generates a repulsion, so they cannot get any closer.

This simple method could visualize complex systems, so we are planning a simi-
lar, faculty-wide image construction. In this model we did not take into account the
quality and quantity of the common publications nor the date of these publications.
Maybe this could tincture the image of the relations.
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Figure 7: Research activities of two departments.

4. Conclusion, further research

In this article we gave a method which is able to represent a tolerance relation
based on similarity and dissimilarity in 2D. The method is a variant of force-based
method, which works on total and partial tolerance relations. We presented the
algorithm, and applied it to some specific tolerance relations.

By changing the tolerance relation the method could change a given location, so
the method could be used in an online system too. We presented the algorithm in
2D, but it can be easily extended into 3D. One run of Algorithm 1 takes n2 steps,
where n is the number of objects. We need to run this algorithm several hundred
times, to get a suitable location. If n is big, this means a lot of calculations. We are
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sure that the tricks used at solving n-body problems, can be used here with a little
adaptation. For example, similar and nearby objects (the members of a cluster)
can be united and handled together by the addition of the forces. We have fast
methods for clustering, so maybe this approach could speed up the calculations.

In the future we would like to examine, whether a higher dimension gives enough
freedom to eliminate the local optimums, or just decreases their numbers, and
by reducing the number of dimensions could we transform a solution in higher
dimension into a spectacular result in 2D. Maybe this could help us in case of big
datasets so that we could work with the data not in its original form, but in a
prepared, partly interpreted form.
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