Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 13, 2017

Phylogenetic position of the Ancash leaf-eared mouse Phyllotis definitus Osgood 1915 (Rodentia: Cricetidae)

  • Edgardo M. Rengifo ORCID logo EMAIL logo and Victor Pacheco
From the journal Mammalia

Abstract

The phylogenetic position of the Ancash leaf-eared mouse Phyllotis definitus remains unresolved, as this species has been considered to be related to Phyllotis magister, Phyllotis xanthopygus or Phyllotis andium by several authors. The objective of this study was to clarify the phylogenetic position of P. definitus using 801 base pairs of cytochrome b sequences. A matrix constituted by 43 specimens was subjected to maximum likelihood, maximum parsimony and Bayesian inference analyses. Our results indicate that P. definitus is a member of the “andium/amicus” group and is closely related to Phyllotis pearsoni, supporting a set of chromosomal and morphological characters previously identified for this group.

Acknowledgments

We acknowledge J.L. Patton (Museum of Vertebrate Zoology, University of California, Berkeley) for kindly supporting us during a visit to the MVZ collection, B.D. Patterson (Field Museum of Natural History, Chicago) and R.S. Voss (American Museum of Natural History, New York). We also thank G. D’Elía (Instituto de Ciencias Ambientales and Evolutivas, Universidad Austral de Chile) for helping with the DNA sequencing and Natali Hurtado for comments on earlier versions of the manuscript. To Klohn Crippen Berger and Minera Barrick Misquichilca SA for the fieldwork coordinations that allowed collection of the two new specimens (MUSM 45095, 45254). We are also grateful to two anonymous reviewers who helped to improve the text.

Appendix 1

Specimens and localities used in this study.

The following list includes all specimens and localities used in this study. See the Materials and methods section for abbreviations of museum collections.

Phyllotis amicus (n=12)

PERU: CAJAMARCA; El Arenal, 1 km S and 6 km W Pomahuaca (MVZ 135721, 135722); ANCASH: 29 km S (by road) Casma (MVZ 139262, 139263); Huaylas, Huallanca, Huallanca (MUSM 2439, 2440, 2441, 2442); Huarmey, Lomas de Lupin (MUSM 2448); LA LIBERTAD: Valle del Moche (MUSM 2443); Camino a Otuzco (MUSM 2449); LIMA: Cerro San Gerónimo (MUSM 2438).

Phyllotis andium (n=24)

PERU: PIURA: Ayabaca, Ayabaca, Samaco (MUSM [PCP] 7585); Ayabaca, Montero Taylín (MUSM [PCP] 1619); Huancabamba, Huancabamba, Jicate (MUSM [PCP] 1025); Huancabamba, Chamanan (MUSM [PCP] 6761);Huancabamba, Sondorillo, Limón (MUSM [PCP] 7487); Huancabamba, Nuevo Progreso (MUSM 21738); Huancabamba, Sondorillo Lanche (MUSM [PCP] 7480, 7562); Huancabamba, Sondorillo, Tierra Negra (MUSM [PCP] 7474); Huancabamba, Sondorillo, Uchupata (MUSM [PCP] 7470, 4027, 7469); Huancabamba, Huarmaca, Moye (MUSM [PCP] 1555) Ferreñafe, Uyurpampa (MUSM 21793, 21796); Lambayeque, Lambayeque, Salas, El Banco (MUSM [PCP] 7048); Lambayeque, Lambayeque, Salas, Higuerón (MUSM [PCP] 7350, 7566); Ferreñafe, Puycate (MUSM 21770, 21773, 21775, 21779, 21782, 21783, 21787, 21788, 21789).

Phyllotis definitus (n=12)

PERU: ANCASH: 1 km N and 12 km E Pariacoto (MVZ 135794, 135795, 135796, 135797, 135798, 135799, 1357802 135803, 135805, 135806); Tinco, 2 km S and 15 km W Huaraz (MVZ 135791, 135792, 135793); Ultu, Mina Pierina, Huaraz (MUSM 45095, 45254).

Phyllotis gerbillus (n=4)

PERU: PIURA: Sechura, Sechura, Médano, Tres Brazos, 10.2 km E de Sechura (MUSM 20936); Sechura, Sechura, Cerro Illescas (MUSM 2479, 2480); Paita Colán, ca Colán (MUSM 2481).

Phyllotis magister (n=16)

PERU: ANCASH: Tihuayno (MUSM 5880, 5888); AREQUIPA: Arequipa, Entrada a quiscos Km 37 (MUSM 21540); Caylloma, Achoma (MUMS 21545), Caylloma, Maca (MUSM 21550, 21551); Condesuyo, Chuquibamba (MUSM 21567); Caraveli, Atiquipa, Loma de Atiquipa (MUSM 45483); AYACUCHO: (MUSM 5947, 5950, 5958, 5970); Parinacochas (MUSM 1686); MOQUEGUA: Mariscal Nieto, Torata, Camp. Quellaveco, Cueva Rio Asana (MUSM 45438); Mariscal Nieto, Torata, Camp. Quellaveco, Rio Capullune (MUSM 45439), Mariscal Nieto, Torata, Camp. Quellaveco, Caracoles (MUSM45444).

Phyllotis occidens (n=49)

PERU: ANCASH: Santa: Cáceres del Perú, Colcap (MUSM 5868); Bolognesi, Huayllacayán Chihuip (Buenavista) (MUSM 4562, 4563, 4565); Huanchoc (MUSM 4334, 4555, 4556, 4566); Pucuhuaillán (MUSM 5412, 5415); Bolognesi, Huayllacayán, Huaillacayán (MUSM 4528); Bolognesi, Huayllacayán, Cochas (MUSM 4505, 4506, 4509, 4517); Bolognesi, Huayllacayan, Marcapara (MUSM 5874); Bolognesi, Huayllacayán, Huacap (4540, 4574); Bolognesi, Huayllacayán, Coriyoc (MUSM 4594, 4580, 4501, 5414, 5416, 5417); Bolognesi, Huayllacayán, Cuchupa (MUSM 4567, 584); LIMA: Huaura, Huacho, Lachay (MUSM 5205); Huarochiri, 1 km al N. de San Pedro de Casta (MUSM 562, 563); Huarochiri, San Pedro de Casta (MUSM 554); Huarochiri, San Pedro de Casta, Marcahuasi, Fortaleza (MUSM 555, 556, 557, 558, 559, 1290); Huarochiri, Surco (MUSM 2457); Lima, Huarochiri, San Bartolomé, Bosque de Zarate (MUSM 4657, 4659, 4660); Huarochirí, Huarochirí (MUSM 544, 545, 546, 547, 549, 550, 551, 552, 553).

Phyllotis pearsoni (n=25)

PERU: La Libertad: Santiago de Chuco, Quiruvilca, Lagunas Norte, Callacuyán (MUSM 24755, 24756, 24758, 24906); Santiago de Chuco, Quiruvilca, Lagunas Norte, Shulcahuanga (MUSM 24759, 24760); Santiago de Chuco, Quiruvilca, Lagunas Norte, depresión camino a laguna Las Vizcachas (MUSM 24762); Santiago de Chuco, Quiruvilca, Las Vizcachas (MUSM 24763, 24764); Santiago de Chuco, Quiruvilca, Lagunas Norte, quebrada Pampa Huacha (MUSM 24765); Santiago de Chuco, Quiruvilca, Lagunas Norte, quebrada San Francisco (MUSM 24767, 24768, 24769, 24914, 24916); Santiago de Chuco, Quiruvilca, Lagunas Norte, Río Negro (MUSM 24772); Santiago de Chuco, Quiruvilca, Cruce entre el Río Grande y el Río Moche (MUSM 24903, 24904); Santiago de Chuco, Quiruvilca, Lagunas Norte, quebrada Alto La Flor (MUSM 24909); Santiago de Chuco, Quiruvilca, Lagunas Norte, quebrada Pampa Huacha (MUSM 24910, 24911, 24912, 24913); Santiago de Chuco, Quiruvilca, Lagunas Norte, Río Caballo Moro (MUSM 24918); Santiago de Chuco, Quiruvilca, Lagunas Norte, Río Negro (MUSM 24924).

Phyllotis stenops (n=8)

PERU: AMAZONAS: Chachapoyas, Chachapoyas (FMNH 19841, 19845, 19846, 19847); Chachapoyas (AMNH 73188, 73189); San Pedro (AMNH 73190–73193); Luya, Cocabamba, Túen (MUSM 38651, 38352).

Appendix 2

Specimens and number accession used for molecular analysis in this study.

Calomys lepidus (AF385606); Calomys miurus (AF385608); Calomys venustus (AY033176); Phyllotis alisosiensis (GQ119625); P. alisosiensis (GQ119626); Phyllotis amicus (AY956708); Phyllotis andium (AY956707); P. andium (KT203817); P. andium (KT203815); P. andium (KT203816); P. andium (KT203814); Phyllotis anitae (AY627298); P. anitae (AY627299); Phyllotis bonariensis (AY956731); P. bonariensis (AY956732); Phyllotis darwini (AY956722); P. darwini (AY956725); P. darwini (AY956726); P. definitus (KX793699); Phyllotis definitus (KX793700); Phyllotis gerbillus (AY956710); P. gerbillus (AY956709); Phyllotis limatus (AY956740); Phyllotis magister (AY956717); P. magister (AY956716); P. magister (AY956719); P. magister (AY956721); Phyllotis osilae phaeus (AY956700); P. osilae phaeus (AY956701); Phyllotis occidens (AY956705); P. occidens (AY956706); P. occidens (AY956704); P. occidens (AY956702);Phyllotis pearsoni (AY956714); P. pearsoni (AY956715); Phyllotis stenops (KX793701); P. stenops (KX793702); Phyllotis xanthopygus vaccarum (AY956735); Phyllotis xanthopygus rupestris (AY956739); P. xanthopygus vaccarum (AY956734); P. xanthopygus vaccarum (AY956736); Phyllotis xanthopygus xanthopygus (AY956737).

Appendix 3

Morphological diagnosis of Phyllotis definitus and comparisons with members of the Phyllotis andium/amicus group and Phyllotis magister.

We present the morphological diagnosis of Phyllotis definitus and comparisons with members of the Phyllotis andium/amicus group and Phyllotis magister.

Systematics

Phyllotis definitus Osgood 1915

Ancash leaf-eared mouse

Phyllotis definitus Osgood, 1915:189; type locality “Macate, 50 miles northeast of Chimbote, [Ancash,] Peru. Altitude 9,000ft.”

Phyllotis magister definitus: Pearson, 1958:431; name combination.

Phyllotis darwini definitus: Hershkovitz, 1962:296; name combination.

Diagnosis

A Phyllotis species characterized by the following combination of traits: large body size for the genus (244.5±16.97 mm in total length) with pelage composed of rufous dorsal coloration and ventrally gray. Chin whitish and contrasting with the zygomatic side of the rostrum. Pectoral streak well-defined and auricular patch present behind the pinnae. Tail short (121.1±9.92 mm), equal or sub-equal to the head and body lengths, bicolored with dark coloration above and gray below (the contrast is not clear). Skull large for the genus (29.74±1.35 mm in condylo-incisive length). Nasal broad. Zygomatic arch robust and interorbital region very narrow. Palatal bone narrow with a broad posteropalatal pit. Mesopterygoid fossae narrow, with the pterygoid process convergent anteriorly and palatal process absent. Toothrow very large (5.63±0.20 mm). Eustachian tube short and middle lacerate foramen slightly open. Procingulum of M1 smaller than the paracone and metacone, m1 with anteromedial stylid and a deep metaflexid. Mandible large and high with the capsular process of the lower incisor alveolus indistinguishable.

Morphological comparisons within the andium/amicus group

Phyllotis definitus is a rodent easily distinguishable from other species of Phyllotis from northern Peru. We compared P. definitus with members of the amicus/andium group (Phyllotis amicus, Phylottis andium, Phyllotis gerbillus, Phyllotis occidens, Phyllotis pearsoni and Phyllotis stenops) and Phyllotis magister.

Phyllotis amicus is distinctly smaller than Phyllotis definitus; it has longer pinnae, tail and hind foot. The superciliary vibrissa is longer, extending posteriorly behind the pinnae when laid back against the head. The tip of the tail of P. amicus resembles a pencil (absent in P. definitus). The cranium is smaller, with a narrower rostrum and a broader interorbital region. The toothrow is smaller and convergent posteriorly. The tympanic bulla is larger with a longer Eustachian tube. The procingulum of M1 is broader, the metaflexid of m1 is shallower and the capsular process in the mandible is conspicuous.

Phyllotis andium is smaller than Phyllotis definitus; it has a grayer dorsal pelage with a more whitish venter; the tail is longer and more bicolored. The pectoral streak and the auricular patches are absent compared to being present in P. definitus. The skull is smaller with a narrower rostrum. The zygomatic arch is slender and the interobital region is broader. The toothrow is smaller and the palatal bone is broader. The mandible has an evident capsular process, whereas in P. definitus it is indistinguishable.

Phyllotis gerbillus is clearly different from Phyllotis definitus, being noticeably smaller in terms of body size; it also has a dorsal pelage composed of yellowish coloration and a venter with white fur (in P. definitus, the dorsal pelage is rufous and the venter is gray). The cranium is smaller, with a narrower rostrum and a broader interorbital region. The toothrow is smaller. The palatal process is present in P. gerbillus but absent in P. definitus. The middle lacerate foramen is more open. The mandible has a capsular process, and the coronoid process is more pronounced. The M1 is broader and the metaflexid of m1 is shallower.

Phyllotis occidens and Phyllotis definitus are sympatric but are easy to differentiate. P. occidens is smaller than P. definitus, having soft and long fur with a gray-yellowish tone and a barely conspicuous pectoral streak (P. definitus has a rufous appearance and a well-defined pectoral streak). The zygomatic arch is slender and the interobital region is broader in P. occidens; the supraorbital margin has smooth-rounded edges (compared to squared edges in P. definitus). The posterolateral palatal pit is smaller, placed anterior or in some cases beside the mesopterygoid fossa (located anteriorly in all specimens of P. definitus). The palatal process is well developed in P. occidens but is absent in P. definitus. Phyllots occidens has a short bony Eustachian tube that does not reach the parapterygoid process, whereas in P. definitus, the Eustachian tube is subequal to the posterior lobe of the pterygoid process. The hamular processes of the squamosal are thinner and the toothrow and the mandible are smaller. In P. occidens, the capsular process of the lower incisor alveolus is conspicuous whereas it is inconspicuous in P. definitus.

Phyllotis magister and Phyllotis definitus were related phylogenetically, based on morphological characters, by Braun (1993) and Steppan (1995). Both taxa are larger than most of the Phyllotis species, but they are non-sympatric and can be easily differentiated. Phyllotis magister has a cinnamon gray dorsal pelage coloration (in P. definitus, the dorsal pelage is rufous) and a longer tail compared to P. definitus. The rostrum is narrower, with a less-developed nasolacrimal capsule. The zygomatic plate presents a spine, which is absent in P. definitus. The fronto-premaxillary suture is aligned with the fronto-nasal suture; in P. definitus it is anterior. Phyllotis magister has a narrower vomer of the incisive foramen and the posterior palatal pits are smaller. The middle lacerate foramen is more open and the mandible has an evident capsular process, indistinguishable in P. definitus.

Phyllotis pearsoni is similar in body and tail size to Phyllotis definitus; however, the former has a grayer dorsal pelage with a more whitish venter and the tail is distinguishably more contrasted. The cranium is slightly smaller, with a narrower rostrum. The posteropalatal pits are smaller. The anterior border of the mesopterygoid fossa exhibits a wider U-shape, while in P. definitus, it exhibits a more quadrate shape. The middle lacerate foramen is more open and the procingulum of M1 is larger.

Phyllotis stenops is smaller than Phyllotis definitus; it exhibits a dorsal pelage composed of rich-brown hairs, whereas in P. definitus, the dorsal pelage is rufous and the venter is gray. The tail is distinctly longer than the combined head and body length. The skull is smaller in P. stenops, having a narrower nasal than P. definitus. Phyllotis stenops displays the frontonasal suture aligned with the frontopremaxillary suture (the frontonasal suture is posterior to the frontopremaxillary suture in P. definitus). Phyllotis stenops shows the internal carotid canal bounded by the petrosal and ectotympanic portions of the auditory bulla, whereas in P. definitus, it is bounded by the basioccipital and the ectotympanic portions of the auditory bulla.

References

Avise J.C., J. Arnold, R.M. Ball, E. Bermingham, T. Lamb, J.E. Neigel, C.A. Reeb and N.C. Saunders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst. 18: 489–522.10.1146/annurev.es.18.110187.002421Search in Google Scholar

Ballard, J.W.O. and M. C. Whitlock. 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13: 729–744.10.1046/j.1365-294X.2003.02063.xSearch in Google Scholar

Braun, J.K. 1993. Systematic relationships of the tribe Phyllotini (Muridae: Sigmodontinae) of South America. Special Publ. Oklahoma Mus. Nat. Hist. Norman 1–50.Search in Google Scholar

Carleton, M.D. 1980. Phylogenetic relationships in neotomine-peromyscine rodents (Muroidea) and a reappraisal of the dichotomy within New World Cricetinae. Misc. Publ. Mus. Zool. Univ. Michigan 157: 1–146.Search in Google Scholar

Carleton, M.D. and G.G. Musser. 1989. Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bull. Am. Mus. Nat. Hist. 191: 1–83.Search in Google Scholar

Drummond, A.J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.10.1186/1471-2148-7-214Search in Google Scholar PubMed PubMed Central

DS N° 004-2014-MINAGRI. (2014). Decreto Supremo que aprueba actualización de la lista de clasificación y categorización de especies amenazadas de fauna silvestre legalmente protegidas por el Estado. 8 de abril de 2014. El Peruano Normas Legales: 520497–520504.Search in Google Scholar

Ferro, L.I., J.J. Martínez and R.M. Barquez. 2010. A new species of Phyllotis (Rodentia, Cricetidae, Sigmodontinae) from Tucumán province, Argentina. Mamm. Biol. 75: 523–537.10.1016/j.mambio.2009.09.005Search in Google Scholar

Hershkovitz, P. 1962. Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana Zool. 46: 1–524.10.5962/bhl.title.2781Search in Google Scholar

Hershkovitz, P. 1994. The description of a new species of South American hocicudo, or long-nose mouse, genus Oxymycterus (Sigmodontinae, Muroidea): with a critical review of the generic content. Fieldiana Zool. 79: 1–43.10.5962/bhl.title.3351Search in Google Scholar

Jayat, J.P., P.E. Ortiz, F.R. González and G. D´Elía. 2016. Taxonomy of the Phyllotis osilae species group in Argentina; the status of the “Rata de los nogales” (Phyllotis nogalaris Thomas, 1921; Rodentia: Cricetidae). Zootaxa 4083: 397–417.10.11646/zootaxa.4083.3.5Search in Google Scholar PubMed

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.10.1007/BF01731581Search in Google Scholar PubMed

Myers, P., J.L. Patton and S.F. Smith. 1990. A Review of the boliviensis group of Akodon Muridae Sigmodontinae with Emphasis on Peru and Bolivia. Misc. Publ. Mus. Zool. Univ. Michigan 177: 1–104.Search in Google Scholar

Norušis M.J. 2011. IBM SPSS statistics 19 guide to data analysis. Upper Saddle River, New Jersey: Prentice Hall.Search in Google Scholar

Pacheco, V. 2002. Mamíferos del Perú, in: (G. Ceballos, and J. Simonetti, eds.) Diversidad y conservación de los mamíferos neotropicales. CONABIO UNAM. Ciudad de México, Mexico. pp. 503–550Search in Google Scholar

Pacheco, V. 2003. Phylogenetic analyses of the Thomasomyini (Muroidea: Sigmodontinae) based on morphological data. Ph.D. dissertation. New York: City University of New York.Search in Google Scholar

Pacheco, V., R. Cadenillas, E. Salas, C. Tello and H. Zeballos. 2009. Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16: 005–032.10.15381/rpb.v16i1.111Search in Google Scholar

Pacheco, V., E.M. Rengifo and D. Vivas. 2014. A new species of Leaf-eared Mouse, genus Phyllotis Waterhouse, 1837 (Rodentia: Cricetidae) from northern Peru. Therya 5: 481–508.10.12933/therya-14-185Search in Google Scholar

Pacheco, V., E.M. Rengifo and D. Vivas. 2015. Corrigendum. Therya 6: 675–678.10.12933/therya-15-316Search in Google Scholar

Pearson, O.P. 1958. A taxonomic revision of the rodent genus Phyllotis. Univ. Calif. Publ. Zool. 56: 391–496.Search in Google Scholar

Pearson, O.P. 1972. New Information on ranges and relationships within the rodent genus Phyllotis in Peru and Ecuador. J. Mammal. 53: 677–68610.2307/1379206Search in Google Scholar

Pfunder, M., O. Holzgang and J. E. Frey. 2004. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochromebas genetic markers. Mol. Ecol. 13: 1277–1286. http://doi.org/10.1111/j.1365-294X.2004.02126.10.1111/j.1365-294X.2004.02126.xSearch in Google Scholar

Posada, D. 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25: 1253–1256.10.1093/molbev/msn083Search in Google Scholar

Rambaut, A. and A.J. Drummond. 2009. Tracer V1.5. Available from.Search in Google Scholar

Reig, O.A. 1977. A proposed unified nomenclature for the enamelled components of the molar teeth of the Cricetidae (Rodentia). J. Zool. 181: 227–241.10.1111/j.1469-7998.1977.tb03238.xSearch in Google Scholar

Rengifo, E.M. and V. Pacheco. 2015. Taxonomic revision of the Andean Leaf-eared mouse, Phyllotis andium Thomas 1912 (Rodentia: Cricetidae), with the description of a new species. Zootaxa 4018: 349–380.10.11646/zootaxa.4018.3.2Search in Google Scholar

Smith, M.F. and J.L. Patton, J.L. 1991. PCR on dried skin and liver extracts from the same individual gives identical products. Trends Genet. 7: 4.10.1016/0168-9525(91)90003-9Search in Google Scholar

Smith, M.F. and J.L Patton. 1993. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for akodontine tribe. Biol. J. Linn. Soc 50: 149–177.10.1111/j.1095-8312.1993.tb00924.xSearch in Google Scholar

Smith, M.F. and J.L. Patton. 1999. Phylogenetic relationships and the radiation of sigmodontine rodents in South America: Evidence from cytochrome b. J. Mamm. Evol. 6: 89–128.10.1023/A:1020668004578Search in Google Scholar

Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.10.1093/bioinformatics/btl446Search in Google Scholar PubMed

Steppan, S.J. 1995. Revision of the Tribe Phyllotini (Rodentia: Sigmodontinae), with a phylogenetic hypothesis for the sigmodontinae. Fieldiana Zool. 80: 1–112.Search in Google Scholar

Steppan, S.J. 1997. Phylogenetic analysis of phenotypic covariance structure I. Contrasting results from matrix correlation and common principal component analyses. Evolution 51: 571–586.10.1111/j.1558-5646.1997.tb02444.xSearch in Google Scholar PubMed

Steppan, S.J. 1998. Phylogenetic relationships and species limits within Phyllotis (Rodentia: Sigmodontinae): concordance between mtDNA sequence and morphology. J. Mammal. 79: 573–593.10.2307/1382988Search in Google Scholar

Steppan S.J. and O. Ramirez. 2015. Genus Phyllotis Water house, 1837. In: (J. L. Patton, U.F.J. Pardiñas and G. D’Elía, eds.) Mammals of South America, Volume 2. The University of Chicago Press Chicago and London. pp. 481–507.Search in Google Scholar

Steppan, S.J., O. Ramirez, J. Banbury, D. Huchon, V. Pacheco, L.I. Walker and A.E. Spotorno. 2007. A molecular reappraisal of the systematics of the leaf-eared mice Phyllotis and their relatives. In: (D.A. Kelt, E. Lessa, J.S. Salazar-Bravo and J.L. Patton, eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, California, pp. 799–826.Search in Google Scholar

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Univ. Mol. Biol. Evol. 30: 2725–2729.10.1093/molbev/mst197Search in Google Scholar PubMed PubMed Central

Voss, R.S. 1988. Systematics and Ecology of Ichthyomyine Rodents (Muroidea): Patterns of morphological evolution in a small adaptive radiation. Bull. Am. Mus. Nat. Hist. 188: 259–494.Search in Google Scholar

Voss, R. S. 1993. A revision of the brazilian muroid rodent genus Delomys with remarks on “Thomasomyine” characters. Am. Mus. Novit. 3073: 1–44.Search in Google Scholar

Voss, R.S. and M.D. Carleton. 1993. A new genus for Hesperomys molitor Winge and Holochilus magnus Hershkovitz (Mammalia, Muridae) with an analysis of Its phylogenetic relationships. Am. Mus. Novit. 3085: 1–39.Search in Google Scholar

Zeballos, H. and E. Vivar. 2008.Phyllotis definitus. The IUCN Red List of Threatened Species 2008: e.T17225A6857427. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T17225A6857427.en. Downloaded on 31 August 2016.10.2305/IUCN.UK.2008.RLTS.T17225A6857427.enSearch in Google Scholar

Zhang, D.-X. and G.M. Hewitt. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol. Ecol. 12: 563–584. https://doi.org/10.1046/j.1365-294X.2003.01773.x10.1046/j.1365-294X.2003.01773.xSearch in Google Scholar PubMed

Received: 2016-9-16
Accepted: 2017-4-26
Published Online: 2017-6-13
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2016-0138/html
Scroll to top button