Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 23, 2021

Taxonomic status and phylogenetic position of Oxymycterus juliacae Allen 1900 (Rodentia: Cricetidae)

  • Dennisse Ruelas ORCID logo EMAIL logo and Víctor Pacheco ORCID logo
From the journal Mammalia

Abstract

The phylogenetic position of the “Upper yungas inca hocicudo” Oxymycterus juliacae, one of the lesser-known species of the genus Oxymycterus, is still unresolved. Several authors considered it a subspecies or synonym of Oxymycterus inca, but more recently, it was recognized as a valid species based on morphometric analysis and morphological traits. The objectives of this study were then to substantiate the morphological distinction of O. juliacae and evaluate its phylogenetic position using cytochrome b sequences. We evaluated the morphology of O. juliacae and compared it with congeneric species. In addition, a Cytochrome b gene matrix was subjected to analyses of maximum likelihood and Bayesian inference. Our results support the morphometric and morphological distinction of O. juliacae and found that this species is more closely related to Oxymycterus willkaurco than to O. inca. Therefore, the recognition of O. juliacae as a full species is supported and a rediagnosis is provided. In addition, we found O. inca is more related to other lowland species from Argentina, Brazil, and Uruguay, than to central Andean species. More efforts are needed to secure genetic material of Oxymycterus species, mainly the Andean species, for a better understanding of their phylogenetic relationship.


Corresponding author: Dennisse Ruelas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 11, Peru; Instituto de Ciencias Biológicas “Antonio Raimondi”, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 01, Peru; and Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon CC 064 - 34095, Montpellier Cedex 5, France, E-mail:

Funding source: Programa Nacional de Innovación para la Competitividad y Productividad

Award Identifier / Grant number: CRN3076 (IAI)

Acknowledgments

We thank Robert Voss for facilitating DR access to the mammal collection of the American Museum of Natural History (New York, United States) and Pierre-Henri Fabre (Institut des Sciences de l’Évolution de Montpellier, France) for sharing with us photos of holotypes of the nominal forms of O. inca (BMNH 0.7.7.45) and O. doris (BMNH 2.1.1.95). We also thank Guillermo D’Elía (Universidad Austral de Chile, Chile) for helping with the DNA sequencing of specimens of O. inca from Madre de Dios, and Ulyses Pardiñas (Centro Nacional Patagónico, Argentina) for providing us tissues of Argentinian specimens of O. paramensis, O. quaestor, and O. rufus and for giving us critical comments on an early draft of this study. Also, we thank Edgardo Rengifo (Universidade de São Paulo, Brazil) for his valuable comments on the draft of this manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was partially funded by the Programa Nacional de Innovación para la Competitividad y Productividad (Innóvate Perú) with the contract no. 402-PNICP-PIBA-2014 (PRODUCE) and Prime award no. CRN3076 (IAI).

  3. Conflict of interest statement: The authors declare they do not have any conflicts of interest regarding this article.

  4. Research ethics: All the samples used in this study came from the scientific collection of the museum; no live specimens were used.

Appendix A

The following list includes all specimens and localities used in morphological analyses. See Section 2 for abbreviations. Asterisks indicate holotypes, and the superscript “p” indicates specimens only examined by photos. Museum abbreviations are explained in Section 2. Numbers in square brackets indicate points mapped in Figure 2.

O xymycterus  hiska (n = 4): BOLIVIA: La Paz, Tacacoma [17] (AMNH 91601, 91602). PERU: Puno, Sandia, 14 km W Yanahuaya (MUSM 5251 [15], MVZ 171519*,p [16]).

O xymycterus  inca (n = 32): PERU: Cusco: La Convención, Camisea, Cashiriari [5] (MUSM 14396, 14400, 14401); La Convención, Camisea, San Martín [4] (MUSM 14407); Paucartambo, Consuelo, 15.9 km SW Pilcopata [10] (MUSM 20008); La Convención, KP 22 [7] (MUSM 38829); La Convención, Vilcabamba [6] (MUSM 40516). Junín: Rio Seco Alto, 13 miles north of La Merced [1] (AMNH 231489, 231492–231494, 231503); Junín, 13 miles north of La Oroya (AMNH 231723, 231726); Junín, 20 km northeast of La Merced [2] (AMNH 231912); Perené, Ucayali watershed (BMNH 0.7.7.45*,p); Satipo, Poyeni [3] (MUSM 35584–35586, 35588, 35715). Madre de Dios: Tambopata, Alegría [8] (MUSM 42662, 42735–42737, 42739, 42741, 43530, 43755, 44099, 44108, 45366).

O xymycterus  juliacae (n = 8): BOLIVIA: Cochabamba, Yungas [19] (AMNH 38649, 38652); Cochabamba, Charuplaya, Upper Mamoré (BMNH 2.1.1.95*: type of O. doris). PERU: Puno, Coaza, Inca Mines (=Santo Domingo Mine) [12] (AMNH 15804*, AMNH 16490); Puno, Sandia, Challohuma [13] (MUSM 26920); Puno, Sandia, Yanahuaya [14] (MUSM 35091, 35094).

O xymycterus  nigrifrons (n = 6): BOLIVIA: La Paz, Aceramarca River (AMNH 72758, 72762, 72766); La Paz, Aceromarca [18] (AMNH 264859, 264862, 264863).

O xymycterus  paramensis (n = 5): BOLIVIA: Cochabamba, Vinto [21] (AMNH 38625, 38631); Cochabamba, Cochacancha [20] (AMNH 38636); Cochabamba, Carrasco, 17 km east of Totora, Tapacari [22] (AMNH 264209, 264211).

O xymycterus  willkaurco (n = 14): PERU: Cusco, Paucartambo, Challabamba, Parque Nacional Manu, Puesto de Vigilancia Acjanaco [11] (MUSM 6719–6721, 6724, 9299, 9300, 9303, 9305, 9307, 9310, 9316, 9317, 9319, 17012).

Appendix B

List of specimens included in the phylogenetic analysis. For each terminal species, GenBank accession number, museum number catalog or collector number, and locality are provided. Accession numbers in bold were gathered in this study. Museum abbreviations: MUSM, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima; MN, Museu Nacional, Rio de Janeiro; MZUSP, Museu de Zoologia, Universidade de São Paulo, São Paulo; MVZ, Museum of Vertebrate Zoology, Berkeley; UMMZ, University of Michigan Museum of Zoology, Michigan; MCNU, Museu de Ciências Naturais da Universidade Luterana do Brasil, Canoas; MHNCI, Museu de História Natural “Capão da Imbuía”, Paraná; MZUFV, Museu de Zoologia João Moojen de Oliveira, Universidade Federal de Viçosa, Viçosa; MNHNP Museo Nacional de Historia Natural del Paraguay, Asunción; CNP, Centro Nacional Patagónico, Chubut; USNM, Smithsonian National Museum of Natural History, Washington; MSB, The Museum of Southwestern Biology, New Mexico; TK, Museum of Texas Tech University, Texas. Numbers in square brackets indicate points mapped in Figure 2.

Akodon azarae (n = 1): URUGUAY: San José, Kiyu (AY702964).

Bibimys labiosus (n = 1): BRAZIL: Minas Gérais, Mata do Paraíso (DQ444329: MN 62062).

Bibimys breviceps (n = 1): BRAZIL: São Paulo, Serra da Cantareira (AY275112: CIT 1391).

Juscelinomys huanchacae (n = 4): BOLIVIA: Santa Cruz, Noel Kempff Mercado National Park, Mangabalito (AY275118: LHE 1616, AY275119: LHE 1617, JQ898083: LHE 162); Parque Nacional Kempff Mercado, El Refugio, 2.5 km NE (KY754009: USNM 584508).

Necromys amoenus (n = 1): Bolivia, Tarija, Serrania del Sama (AF159283).

O xymycterus  amazonicus (n = 1): BRAZIL: Para (AF454765: MZUSP 21317).

O xymycterus  dasytrichus (n = 9): BRAZIL: Itapoá, Santa Catarina (KU161271: FURB 18669); Antonina, basin of the Rio Nunes (KU161272); Espírito Santo (AF454771: ML 125); São Paulo (AF454768: MVZ 183125, AF454769: MVZ 183126, AF454770: JLP 16283); São Paulo, Base do Carmo, Fazenda Intervales, Municipio de Capao Bonito (KY754091); Minas Gerais, Viçosa (AF516659: MN 65534); Rio de Janeiro, Tarituba (AF516665: MN 62260).

O xymycterus  delator (n = 6): BRAZIL: Fazenda Sao Luis, 30 km N Barra do Garcas (LPC 458); Mato Grosso, Barra do Garças (AF454767: LPC 481). PARAGUAY: 13.3 km by road N Curuguaty, Canendiyu (AF454766: UMMZ 137077); Canendiyu (U03525: UMMZ 133939); Itapda, Estancia San Isidro (DQ518256: MNHNP 2914); no locality (AY275125: UMMZ 175101).

O xymycterus  hiska (n = 2): PERU: Puno, Sandia, 14 km W Yanahuaya (U03542: MVZ 171518 and 171519 [16], MW713035: MUSM 5251 [15]).

O xymycterus  inca (n = 8): PERU: Cusco, Camisea (MW713036: MUSM not cataloged AVG831); Junín, Satipo, Poyeni [3] (MW713043: MUSM35583); Madre de Dios, Alegría [8] (MW713039: MUSM 42735, MW713040: MUSM 42737, MW713041: MUSM 42738, MW713042: MUSM 42739, MW713037: MUSM not cataloged ID473); Madre de Dios (MW713038: MUSM not cataloged AUP 205).

O xymycterus  itapeby (n = 2): BRAZIL: São Paulo, Itapevi, Transurb district,“Condomínio Vila Verde” (MK331136: MHNCI 3593, MK331137: MHNCI 3595).

O xymycterus  josei (n = 2): URUGUAY: Maldonado, Las Flores (AF175288: MVZ 183264, AF175289: MVZ 183265).

O xymycterus  juliacae (n = 2): PERU: Puno, Yanahuaya [14] (MW713044: MUSM 35090, MW713045: MUSM 35091).

O xymycterus  nasutus (n = 6): BRAZIL: Barra do Ribeiro (MF766148: MCNU 3147); Piraquara (MF766115: UFPRP 59, MF766116: UFPRP 60); Rio Grande (MF766175: CMLCE MEV01). URUGUAY: Maldonado (AF175286: MVZ 182701); Maldonado, km 10 on Ruta 39 N of Maldonado, El Peñasco (KY754092).

O xymycterus  paramensis (n = 4): Argentina: Jujuy, León, Río Lozano, 3 km upwaters route 9 [26] (DQ518260: CNP 852); Jujuy, San Francisco [25] (DQ518261: CNP 850); Pampa Verde, aprox. 8 km al OSO de Los Toldos y al S del Cerro Bravo [24] (DQ518259: CML 7251); Jujuy, no locality (MW713046: CNP -UP 682). BOLIVIA: Cochabamba, Quchapampa Jach’a Suyu [23] (AY041197: MSB 67277).

O xymycterus  willkaurco (n = 1): PERU: Cusco, 55.4 km N Calca [9] (U03536: UMMZ 160535).

O xymycterus  quaestor (n = 6): Argentina: Misiones, Reserva Privada de la UNLP “Valle del arroyo Cuña Pird,” Balneario arroyo Cuña Pird (DQ518257: CNP 851); Misiones, Parque Provincial Piñalito (MW713047: CNP-CG 785). BRAZIL: Rio de Janeiro (AF454772: LG 41); Rio de Janeiro, Teresópolis (AF516660: MN 65544); São Paulo, Base do Carmo, Fazenda Intervales, Município de Capão Bonito (AF454773: MVZ 183128, AF454774: MVZ 183129). PARAGUAY: Colonia Britez Cue (EU449517: TK 121751).

O xymycterus  rufus (n = 4): Argentina: Córdoba, Rio Cuarto (AF454775: TK 49118); Entre Ríos, Villa Elisa (MW713048: CNP-CG 846, MW713049: CNP-CG 847). BRAZIL: Minas Gerais, Viçosa (AF516652: PRG 903); Minas Gerais, Viçosa (AF516653: MZUFV 713, AF516654: MN 65522).

Oxymycterus wayku (n = 1): Argentina: Tucumán, aprox. 10 km al S de Hualinchay, sobre el camino a Lara, 2316 m (DQ518262: CML7247).

Scapteromys tumidus (n = 1): URUGUAY: Maldonado, 3 km E Pan de Azucar, Arroyo El Renegado (KY754148: MVZ 183267).

Thomasomys oreas (n = 1): PERU: Cusco, 32 km NE (by road) Paucartambo, km 112 (AF108677: MVZ 166703).

Appendix C

Morphological redescription of Oxymycterus juliacae.

Systematics

Oxycterus juliacae Allen (1900) (Figure 1)

Redescription

Externally, the dorsal pelage is slightly dense and dark brown. The ventral pelage is brownish whit bases grayish. The pelage is slightly long-sized (dorsal fur at rump level: 11.50 mm, ventral fur at belly level: 7.60 mm). The muzzle is slightly elongated. One genal vibrissae, two supraciliary vibrissae, and numerous mystacial vibrissae that no reaches the corner of the ear. The interramals are very small and whitish. The ears are medium size and covered by small darker hairs. The hind feet are almost twice forefeet length. The dorsum of the manus and pes are densely covered by small brownish and whitish hairs. The ungual manus tufts are very small. The metacarpal patch is absent. The first digit of the forefeet very small with a claw notable and reach the base of fifth digit approximately (without claw). The fifth digit (without claw) slightly passes the second interphalangeal joint of the fourth digit. The digital pads II-IV of the palmar are developed, digital pad I is absent, hypothenar larger than thenar. The claws of the manus and pes very developed (manus: 5.00 mm, pes: 5.70 mm). The ungual pedal tufts pass the claws. The foot is medium-sized and slightly broad. The first pedal digit smaller than fifth pedal digit (without claw) and not reaches the second digit base; the second, third and fourth digits are large and almost same size. The digital pads I-IV of the plantar are developed, thenar larger than hypothenar. The metatarsal patch is absent. The dorsum fur of foot is brownish. The plantar squamation is inconspicuous. The tail is small, approximately 40% smaller than head-body length (96–105 mm) and monocolored, sometimes slightly bicolored. The hairs of the tail are scattered and mainly black and hard. Scales of the tail are wide at dorsal side and narrow at ventral side. Each scale content two or three hairs. The pencil tuft of the tail is absent.

The skull is characterized by an elongated and broad rostrum and a moderately developed rostral tube, formed by nasal and premaxillar projection beyond the plane of the incisors; os rostri present. The rostral tube is not completed, in ventral view is separated by a narrow notch. The gnathic process is very reduced. The nasal bones are narrow, and in lateral view are slightly curved up. The nasolacrimal capsules are slightly swollen. The lacrimal bones are large and oval. The antorbital bridge is short and slightly narrow. The posterior border of nasal bones (nasofrontal suture) is slightly rounded or truncated. The interorbital region is hourglass-shaped. The zygomatic notches are shallow. The zygomatic arch is delicate and slightly rounded. The zygomatic plates are narrow with the anterior border curved and strongly curved backward. The interparietal along the interparietal suture is broad. The lambdoidal crest is slightly developed. The squamosal root of the zygomatic are narrow. The glenoid fossa is deep. The paraoccipital process is little developed. The exoccipital and supraoccipital are inflated; exoccipital presents a conspicuous median crest. The palatine bone is short and wide, the posterior border of the palatine bone is short and reaches the half of M3. The mesopterygoid fossa is elongated, longer than the molar series. The parapterygoid borders are parallel on most of their extension and slightly divergent in the posterior segment. The incisive foramen is lyre-shaped with convergent borders, and its posterior extremity goes beyond the M1 procingulum. The pterygoid hamulus are slightly developed, extended beyond the eustachian tube border, and have parallel borders. The sphenopalatine vacuities are very narrow or closed. The parapterygoid fossa is deep and narrow. The auditory bulla is swollen. The external auditory meatus is small-sized and elongated. The eustachian tube is long. The posglenoid foramen is slightly developed. The postglenoid foramen is narrow but longer than the subsquamosal foramen. The hamular process of the squamosal is thin. The basioccipital is markedly depressed and presents a prominent central ridge. The mandible is elongated and slim, the ramus is narrow. The mental foramen is well-developed. The masseteric ridges are scarcely developed. The coronoid process is thin and elongated, and it is separated from the condyloid process by a shallow and concave sigmoid notch. The condylar process isslightly narrow and separated from the angular process by a concave mandibular notch. The capsular process is little developed or absent. The upper incisors are opisthodont. The upper molar series is parallel. The first upper molar (M1) of has the anteromedian flexus slightly developed, the anterolingual lophule is as developed as the anterolabial lophule; the antheroloph and mesoloph are well-developed; the mesolophule and metalophule are present; the posteroloph is slightly developed; the paraflexus and metaflexus are very deep; the protocone is larger than the paracone; the metacone is larger than hypocone. The second upper molar (M2) has the mesoloph is well developed; the posteroloph is slightly developed; the paraflexus is deep; metaflexus is very deep; the hypoflexus is deep; the protocone is larger than the paracone; the hypocone is larger than the paracone. The third upper molar (M3) is cylindrical and very small, half in size than M2. The lower molar series are parallel; molars crested; the main cusps are alternate. The first lower molar (m1) presents a deep preflexid; labiolophulid and ectolophid are wide, rounded, and well developed; anterolophid is little developed; mesolophid is long and well developed; posteroconulid is long and well developed; protoconid is larger than the metaconid; hypoconid is larger than the entoconid. The second lower molar (m2) has the ectolophid and the mesolophid are long and rounded; posteroconulid is slightly long; the protoconid and the hypoconid are larger and wider than the metaconid and the entoconid. The third lower molar (m3) is small, half of m1; four cuspids are visible (protoconid, metaconid, hypoconid, and entoconid); the hypoflexid is deep and straight. The m1 procingulum presents a shallow anteromedian flexid; the proconid is larger than the metaconid; the anterior murid is wide and slightly diagonal; the metaflexid is deep and strongly upward curved; an undeveloped mesolophid is present; the hypoflexid is shallow and straight; an undeveloped ectolophid is present; the median murid is short and wide; the hypoconid is larger and narrower than the entoconid; the posteroflexid is deep and strongly upward curved; the posterolophid is well-developed and straight (Supplementary Figure S1).

Remarks

The holotype of O. juliacae is an adult specimen (class age 4) preserved as skin in good conditions and skull removed and cleaned. Molars are largely worn, and the sphenoid region is damaged (see Figure 2). We followed Oliveira and Gonçalves (2015) who considered doris a synonym of juliacae. The holotype of doris (BMNH 2.1.1.95) is a subadult specimen (class age 2) with unfused basisphenoid-basioccipital suture. Compared with O. juliacae s.s., the holotype of doris has the incisive foramina drop-shaped vs. lyre-shaped, the zygomatic plate is narrower, gnathic process is more evident, nasal bone is slightly more elongated, and the coronoid process is thinner and slightly more elongated. This specimen was not used in morphological comparisons because its morphological difference appears to be non-geographic variation. Modern techniques allow to obtain good quality DNA from old skin specimens that could be applied to doris, to assess genetic similarity with respect to juliacae. Our rediagnosis of O. juliacae is based on evaluation of specimens captured near the type locality in Puno and all other specimens from Bolivia (see Appendix A).

The type locality of O. juliacae was restricted to “Inca Mines [=Santo Domingo Mine], about 200 miles northeast of Juliaca, on the east side of the Andes, on the Inambary River [=Río Inambarí],” Puno, Peru (Allen 1901). The coordinates (13.51°S 69.41°W) were later given by Stephens and Trailor (1983). Because this is a type locality for several species, it is important to provide a more precise site location. The Santo Domingo Gold Mine (13.88°S 69.65°W) is located in the Coaza district, Carabaya province, Puno department, between the Macho and Santo Domingo rivers, following the Juliaca-Limbani route at 230 km according to (Anaya Franco 1996; The Diggings™ 2021; Vivier 2017). In addition, “Inca Mines” is a short name of Inca Mining Company, which bought the Santo Domingo Gold Mine (see Anaya Franco 1996: 52). Then, the coordinates for Santo Domingo Mine should be 13.51°S, 69.41°W. This mine is currently closed. Other nominal forms of rodents described from this locality are Akodon aerosus baliolus Osgood, 1915, Oxymycterus apicalis Allen (1900), Oryzomys keaysi Allen (1900), Oryzomys obtusirostris Allen (1900), Rhipidomys ochrogaster Allen (1901), and Dactylomys peruanus Allen (1900) (Emmons et al. 2015; Oliveira and Gonçalves 2015; Pardiñas et al. 2015; Patton 2015; Tribe 2015).

References

Abreu-Júnior, E.F., De Freitas, M.A., Lapenta, M.J., Venâncio, N.M., De França, D.P.F., and Percequillo, A.R. (2016). Marsupials and rodents (Didelphimorphia and Rodentia) of upper Rio Acre, with new data on Oxymycterus inca Thomas, 1900 from Brazil. Check List 12: 1956, https://doi.org/10.15560/12.5.1956.Search in Google Scholar

Allen, J.A. (1900). On mammals collected in southeastern Peru, by Mr. H.H. Keays, with descriptions of new species. Bull. Am. Mus. Nat. Hist. 13: 219–227.Search in Google Scholar

Allen, J.A. (1901). On a further collection of mammals from southeastern Peru, collected by Mr. H. H. Keays, with descriptions of new species. Bull. Am. Mus. Nat. Hist. 14: 41–46.Search in Google Scholar

Anaya Franco, E. (1996). Las inversiones extranjeras directas en el Peru en el siglo XX (1897-1996). Rev. Fac. Cienc. Económicas Univ. Nac. Mayor San Marcos 1: 45–61.Search in Google Scholar

Baker, R.J. and Bradley, R.D. (2006). Speciation in mammals and the genetic species concept. J. Mammal. 87: 643–662, https://doi.org/10.1644/06-mamm-f-038r2.1.Search in Google Scholar

Cabrera, A. (1961). Catálogo de los mamíferos de América del Sur. II (Sirenia-Perissodactyla-Artiodactyla-Lagomorpha-Rodentia-Cetacea). Rev. Mus. Argent. Cienc. Nat. “Bernardino Rivadavia” 4: 309–732.Search in Google Scholar

Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772, https://doi.org/10.1038/nmeth.2109.Search in Google Scholar

Emmons, L.H., Patton, J.L., and Leite, Y.L.R. (2015). Subfamily Dactylomyinae Tate, 1935. In: Patton, J.L., Pardiñas, U.F.J., and D’Elía, G. (Eds.), Mammals of South America, Volume 2: Rodents. University of Chicago Press, Chicago, pp. 880–888.Search in Google Scholar

Gonçalves, P.R. and Oliveira, J.A.de. (2004). Morphological and genetic variation between two sympatric forms of Oxymycterus (Rodentia: Sigmodontinae): an evaluation of hypotheses of differentiation within the genus. J. Mammal. 85: 148–161, https://doi.org/10.1644/ber-012.Search in Google Scholar

Hershkovitz, P. (1994). The description of a new species of South American hocicudo, or long-nose mouse, genus Oxymycterus (Sigmodontinae, Muroidea), with a critical review of the generic content. Fieldiana Zool. New Ser. 79: 1–43.10.5962/bhl.title.3351Search in Google Scholar

Hinojosa, P., F., Anderson, S., and Patton, J.L. (1987). Two new species of Oxymycterus (Rodentia) from Peru and Bolivia. Am. Mus. Novit. 2898: 1–17.Search in Google Scholar

Hoffmann, F.G., Lessa, E.P., and Smith, M.F. (2002). Systematics of Oxymycterus with description of a new species from Uruguay. J. Mammal. 83: 408–420, https://doi.org/10.1644/1545-1542(2002)083<0408:soowdo>2.0.co;2.10.1644/1545-1542(2002)083<0408:SOOWDO>2.0.CO;2Search in Google Scholar

Hurtado, N. and Pacheco, V. (2017). Revision of Neacomys spinosus (Thomas, 1882) (Rodentia: Cricetidae) with emphasis on Peruvian populations and the description of a new species. Zootaxa 4242: 401, https://doi.org/10.11646/zootaxa.4242.3.1.Search in Google Scholar

Jayat, J.P., D’Elía, G., Pardiñas, U.F.J., Miotti, M.D., and Ortiz, P.E. (2008). A new species of the genus Oxymycterus (Mammalia: Rodentia: Cricetidae) from the vanishing yungas of Argentina. Zootaxa 1911: 31–51, https://doi.org/10.11646/zootaxa.1911.1.2.Search in Google Scholar

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874, https://doi.org/10.1093/molbev/msw054.Search in Google Scholar

Lau, M.K. (2013). Dunnett-Tukey-Kramer pairwise multiple comparison test adjusted for unequal variances and unequal sample sizes, R Package Version 35, Available at: https://cran.r-project.org/package=DTK.Search in Google Scholar

Letunic, I. and Bork, P. (2019). Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47: W256–W259, https://doi.org/10.1093/nar/gkz239.Search in Google Scholar

Musser, G.G. and Carleton, M.D. (2005). Superfamily Muroidea. In: Wilson, D.E., and Reeder, D.M. (Eds.), Mammal species of the world: A taxonomic and geographic reference. The Johns Hopkins University Press, Baltimore, pp. 1–2142.Search in Google Scholar

Myers, P., Patton, J.L., and Smith, M.F. (1990). A review of the Boliviensis group of Akodon (Muridae: Sigmodontinae), with emphasis on Peru and Bolivia. Misc. Publ. Mus. Zool. Univ. Mich. 177: 1–104.Search in Google Scholar

Nguyen, L.-T., Schmidt, H.A., Haeseler, A.von, and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268–274, https://doi.org/10.1093/molbev/msu300.Search in Google Scholar

Oliveira, J. (1998). Morphometric assessment of species groups in the South American rodent genus Oxymycterus (Sigmodontinae), with taxonomic notes based on the analysis of type material, Ph.D. dissertation. Texas, USA, Texas Tech University.Search in Google Scholar

Oliveira, J. and Gonçalves, P. (2015). Genus Oxymycterus Waterhouse, 1837. In: Patton, J.L., Pardiñas, U.F.J., and D’Elia, G. (Eds.), Mammals of South America. Vol. 2, Rodents. The University of Chicago Press, Chicago, pp. 247–268.Search in Google Scholar

Pacheco, V. (2015). Genus Thomasomys Coues, 1884. In: Patton, J.L., Pardiñas, U.F.J., and D’Elia, G. (Eds.), Mammals of South America. Vol. 2, Rodents. The University of Chicago Press, Chicago, pp. 617–682.Search in Google Scholar

Pacheco, V. and Peralta, M. (2011). Rediscovery of Rhipidomys ochrogaster J.A. Allen, 1901(Cricetidae: Sigmodontinae) with a redescription of the species. Zootaxa 3106: 42–59, https://doi.org/10.11646/zootaxa.3106.1.3.Search in Google Scholar

Pacheco, V., Cadenillas, R., Salas, E., Tello, C., and Zeballos, H. (2009). Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16: 005–032.10.15381/rpb.v16i1.111Search in Google Scholar

Pacheco, V., Márquez, G., Salas, E., and Centty, O. (2011). Diversidad de mamíferos en la cuenca media del río Tambopata, Puno, Perú. Rev. Peru. Biol. 18: 231–244, https://doi.org/10.15381/rpb.v18i2.246.Search in Google Scholar

Pardiñas, U.F.J., Cañón, C., Galliari, C.A., Brito, J., Bernal Hoverud, N., Lessa, G., and Oliveira, J.A.de. (2020). Gross stomach morphology in akodontine rodents (Cricetidae: Sigmodontinae: Akodontini): a reappraisal of its significance in a phylogenetic context. J. Mammal. 101: 835–857, https://doi.org/10.1093/jmammal/gyaa023.Search in Google Scholar

Pardiñas, U.F.J., D’Elía, G., Teta, P., Ortiz, P.E., Jayat, P.J., and Cirignoli, S. (2006). Familia Cricetidae Rochebrune, 1883. Subfamilia Sigmodontinae Wagner, 1843. Tribu Akodontini Vorontsov, 1959 (sensu D’Elía, 2003). In: Barquez, R.M., Díaz, M.M., and Ojeda, R.A. (Eds.), Mamíferos de Argentina. Sistemática y distribución. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Mendoza, 146–330 pp.Search in Google Scholar

Pardiñas, U.F.J., Teta, P., Alvarado-Serrano, D., Geise, L., Jayat, J.P., Ortiz, P.E., Gonçalves, P.R., and D’Elía, G. (2015). Genus Akodon Meyen, 1833. In: Patton, J.L., Pardiñas, U.F.J., and D’Elía, G. (Eds.), Mammals of South America, Volume 2: Rodents. University of Chicago Press, Chicago, pp. 144–204.10.7208/chicago/9780226169606.001.0001Search in Google Scholar

Patton, J.L. (2015). Genus Lenoxus Thomas, 1909. In: Patton, J.L., Pardiñas, U.F.J., and D’Elía, G. (Eds.), Mammals of South America, Volume 2: Rodents. University of Chicago Press, Chicago, pp. 231–232.10.7208/chicago/9780226169606.001.0001Search in Google Scholar

Patton, J.L., Da Silva, M.N.F., and Malcolm, J.R. (2000). Mammals of the rio Juruá and the evolutionary and ecological diversification of Amazonia. Bull. Am. Mus. Nat. Hist. 244: 1–306, https://doi.org/10.1206/0003-0090(2000)244<0001:motrja>2.0.co;2.10.1206/0003-0090(2000)244<0001:MOTRJA>2.0.CO;2Search in Google Scholar

Peçanha, W.T., Althoff, S.L., Galiano, D., Quintela, F.M., Maestri, R., Gonçalves, G.L., and Freitas, T.R.O. (2017). Pleistocene climatic oscillations in Neotropical open areas: refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands, (R. Castiglia, ed.). PLoS One 12: e0187329, https://doi.org/10.1371/journal.pone.0187329.Search in Google Scholar

Peçanha, W.T., Quintela, F.M., Althoff, S.L., Oliveira, J.A., Gonçalves, P.R., Jung, D.M.H., Christoff, A.U., Gonçalves, G.L., and Freitas, T.R.O. (2020). Genetic and morphological variation of Oxymycterus (Rodentia: Sigmodontinae) in the Brazilian Atlantic forest, (R. Moratelli, ed.). J. Mammal. 101: 1561–1577, https://doi.org/10.1093/jmammal/gyaa111.Search in Google Scholar

Peçanha, W.T., Quintela, F.M., Jorge Ribas, L.E., Althoff, S.L., Maestri, R., Gonçalves, G.L., and De Freitas, T.R.O. (2019). A new species of Oxymycterus (Rodentia: Cricetidae: Sigmodontinae) from a transitional area of Cerrado – Atlantic forest in southeastern Brazil. J. Mammal. 100: 578–598, https://doi.org/10.1093/jmammal/gyz060.Search in Google Scholar

Percequillo, A.R. (2015). Genus Nephelomys Weksler, Percequillo, and Voss, 2006. In: Patton, J.L., Pardiñas, U.F.J., and D’Elía, G. (Eds.), Mammals of South America. Volume 2, Rodents. The University of Chicago Press, Chicago, 377–390 pp.Search in Google Scholar

R Core Team, (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: https://www.R-project.org/.Search in Google Scholar

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61: 539–542, https://doi.org/10.1093/sysbio/sys029.Search in Google Scholar PubMed PubMed Central

Ruelas, D. and Pardiñas, U.F.J. (2017). Upper yungas inca hocicudo Oxymycterus inca. In: Wilson, D.E., LacherJr, T.E., and Mittermeier, R.A. (Eds.), Handbook of the mammals of the world. Rodents II. Lynx Edicions, Barcelona, p. 465.Search in Google Scholar

Smith, M.F. and Patton, J.L. (1993). The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177, https://doi.org/10.1111/j.1095-8312.1993.tb00924.x.Search in Google Scholar

Stephens, L. and Trailor, M.A.Jr. (1983). Ornithological gazetteer of Peru. Harvard College Press, Cambridge.Search in Google Scholar

The Diggings™ (2021). Santo Domingo mine. The Diggings™, Available at: <https://thediggings.com/mines/18189#mine-location-info> (Accessed 12 December 2020).Search in Google Scholar

Tribe, C.J. (2015). Genus Rhipidomys Tschudi, 1845. In: Patton, J.L., Pardiñas, U.F.J., and D’Elía, G. (Eds.), Mammals of South America, Volume 2: Rodents. University of Chicago Press, Chicago, pp. 583–617.Search in Google Scholar

Vivier, J. (2017). Una mirada ‘auténtica’: El ‘indígena’ cuzqueño en la producción fotográfica de Martín Chambi, la película Kukuli y la publicidad turística, Mémoire en vue de l’obtention du grade de maître ès arts (M.A.) en Études hispaniques. Université de Montréal, Canada.Search in Google Scholar

Zeballos, H., Medina, C.E., Rico-Cernohorska, A., and Salazar-Bravo, J. (2021). Una especie nueva de Oxymycterus (Cricetidae: Sigmodontinae: Akodontini) del sureste de Perú. Mastozool. Neotropical. 28: 1–19, https://doi.org/10.31687/saremmn.21.28.1.0.26.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2021-0028).


Received: 2021-02-17
Accepted: 2021-07-21
Published Online: 2021-08-23
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2021-0028/html
Scroll to top button