Publicado

2022-06-29

Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg

Acción fotoprotectora, actividad antioxidante y toxicidad de extractos acuosos de Campomanesia sessiliflora O. Berg

Ação fotoprotetora, atividade antioxidante e toxicidade de extratos aquosos de Campomanesia sessiliflora O. Berg

DOI:

https://doi.org/10.15446/rev.colomb.quim.v50n3.97095

Palabras clave:

Secondary metabolites, Artemia salina, Phenolic Compounds (en)
Metabólitos secundários, Artemia salina, Compostos fenólicos (pt)
Metabolitos secundarios, Artemia salina, Compuestos fenólicos (es)

Autores/as

Campomanesia sessiliflora O. Berg is a medicinal plant that is object of very few studies in the literature. In this context, the antioxidant activity, sun protection factor (SPF) and toxicity in Artemia salina Leachs were analysed, as well as the contents of phenolic compounds, flavonoids and tannins in aqueous extracts prepared by infusion and maceration of C. sessiliflora leaves. Maceration showed higher levels of phenolic compounds and flavonoids regarding infusion and the two samples had the same tannin content. The LD50 was similar for the extracts, both were considered as low toxicity in the test with A. salina. Infusion presented a SPF of 9.98, while maceration presented a SPF of 6.74. Maceration presented better contents of secondary metabolites and antioxidant activity and infusion presented a better SPF. The extracts have the potential of incorporation into multifunctional products.

Campomanesia sessiliflora O. Berg es una planta medicinal que tiene pocos estudios en la literatura. En este contexto, se analizó la actividad antioxidante, factor de protección solar (FPS) y toxicidad en lixiviados de Artemia salina, así como el contenido de compuestos fenólicos, flavonoides y taninos en extractos acuosos preparados por infusión y maceración de hojas de C. sessiliflora. La maceración mostró niveles más altos de compuestos fenólicos y flavonoides, en relación con la infusión, y las dos muestras tuvieron el mismo contenido de taninos. La DL50 fue similar para los extractos, considerándose ambas muestras de baja toxicidad en el ensayo con A. salina. La infusión presentó un FPS de 9,98, mientras que la maceración tuvo un FPS de 6,74. La maceración mostró niveles más altos de metabolitos secundarios y actividad antioxidante y la infusión mostró un mejor FPS. Los extractos muestran potencial para incorporarse a productos multifuncionales.

Campomanesia sessiliflora O. Berg é uma planta medicinal que apresenta poucos estudos na literatura. Neste contexto, foram analisados a atividade antioxidante, fator de proteção solar (FPS) e toxicidade em Artemia salina Leachs, assim como os teores de compostos fenólicos, flavonoides e taninos dos extratos aquosos preparados por infusão e maceração das folhas de C. sessiliflora. A maceração apresentou maior teores de compostos fenólicos e flavonoides em relação a infusão e as duas amostras apresentaram o mesmo teor de taninos. O DL50 foi semelhante para os extratos, ambas amostras sendo consideradas como baixa toxicidade no ensaio com A. salina. A infusão apresentou FPS de 9,98, enquanto que a maceração o FPS foi de 6,74.  A maceração apresentou maiores teores de metabólitos secundários e atividade antioxidante e a infusão apresentou melhor FPS. Os extratos apresentam potencial para a incorporação em produtos multifuncionais.

Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg

Orgánica y Bioquímica

Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg

Acción fotoprotectora, actividad antioxidante y toxicidad de extractos acuosos de Campomanesia sessiliflora O. Berg

Ação fotoprotetora, atividade antioxidante e toxicidade de extratos aquosos de Campomanesia sessiliflora O. Berg

Thiago Luis Aguayo-de-Castro
State University of Mato Grosso do Sul, Brasil
Bianca Ferreira-Duarte
State University of Mato Grosso do Sul, Brasil
Claudia Andrea Lima-Cardoso
State University of Mato Grosso do Sul, Brasil

Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg

Revista Colombiana de Química, vol. 50, núm. 3, pp. 10-15, 2021

Universidad Nacional de Colombia

Recepción: 06 Julio 2021

Revisado: 27 Octubre 2021

Aprobación: 14 Febrero 2022

Abstract: Campomanesia sessiliflora O. Berg is a medicinal plant that is object of very few studies in the literature. In this context, the antioxidant activity, sun protection factor (SPF) and toxicity in Artemia salina Leachs were analysed, as well as the contents of phenolic compounds, flavonoids and tannins in aqueous extracts prepared by infusion and maceration of C. sessiliflora leaves. Maceration showed higher levels of phenolic compounds and flavonoids regarding infusion and the two samples had the same tannin content. The LD50 was similar for the extracts, both were considered as low toxicity in the test with A. salina. Infusion presented a SPF of 9.98, while maceration presented a SPF of 6.74. Maceration presented better contents of secondary metabolites and antioxidant activity and infusion presented a better SPF. The extracts have the potential of incorporation into multifunctional products.

Keywords: Secondary metabolites, Artemia salina, Phenolic Compounds.

Resumen: Campomanesia sessiliflora O. Berg es una planta medicinal que tiene pocos estudios en la literatura. En este contexto, se analizó la actividad antioxidante, factor de protección solar (FPS) y toxicidad en lixiviados de Artemia salina, así como el contenido de compuestos fenólicos, flavonoides y taninos en extractos acuosos preparados por infusión y maceración de hojas de C. sessiliflora. La maceración mostró niveles más altos de compuestos fenólicos y flavonoides, en relación con la infusión, y las dos muestras tuvieron el mismo contenido de taninos. La DL50 fue similar para los extractos, considerándose ambas muestras de baja toxicidad en el ensayo con A. salina. La infusión presentó un FPS de 9,98, mientras que la maceración tuvo un FPS de 6,74. La maceración mostró niveles más altos de metabolitos secundarios y actividad antioxidante y la infusión mostró un mejor FPS. Los extractos muestran potencial para incorporarse a productos multifuncionales.

Palabras clave: metabolitos secundarios, Artemia salina, compuestos fenólicos.

Resumo: Campomanesia sessiliflora O. Berg é uma planta medicinal que apresenta poucos estudos na literatura. Neste contexto, foram analisados a atividade antioxidante, fator de proteção solar (FPS) e toxicidade em Artemia salina Leachs, assim como os teores de compostos fenólicos, flavonoides e taninos dos extratos aquosos preparados por infusão e maceração das folhas de C. sessiliflora. A maceração apresentou maior teores de compostos fenólicos e flavonoides em relação a infusão e as duas amostras apresentaram o mesmo teor de taninos. O DL50 foi semelhante para os extratos, ambas amostras sendo consideradas como baixa toxicidade no ensaio com A. salina. A infusão apresentou FPS de 9,98, enquanto que a maceração o FPS foi de 6,74. A maceração apresentou maiores teores de metabólitos secundários e atividade antioxidante e a infusão apresentou melhor FPS. Os extratos apresentam potencial para a incorporação em produtos multifuncionais.

Palavras-chave: Metabólitos secundários, Artemia salina, Compostos fenólicos.

Introduction

The skin can be subjected to burns, premature aging and harmful neoplasms when exposed to excessive ultraviolet (UV) light, which can trigger skin diseases [1]. Therefore, it is necessary to use photoprotective products that act to protect the skin against this type of radiation [2].

How sunscreens work depends on their chemical composition: Physical filters are composed of inorganic materials that work by scattering and reflecting radiation, whereas organic filters are made up of organic compounds that have an aromatic ring with an ortho electron donor group so that they act by absorbing light through the resonance mechanism, transforming electromagnetic energy into heat or fluorescent light [3].

Despite the importance of using sunscreens, some organic substances can be absorbed, metabolised or accumulated, which can result in skin problems. In this context, natural sunscreens have gained attention due to their diverse biological activities and low toxicity [4].

A common biological model for preliminary toxicity tests is the Artemia salina Leachs. It is widely employed due to its low cost, long storage period for dormant cysts, easy handling, and low tolerance to changes in its breeding environment, with the results indicating possible negative effects on human beings [5, 6].

Plant extracts have shown great potential for being used as natural sunscreens, due to the presence of secondary metabolites [7]. Phenolic compounds are secondary metabolites that help in the defense of the plant and are constituted by two aromatic rings that have one or more hydroxyls (electron donor groups) [8] whose presence has been associated with the photoprotective action of plant extracts, mainly molecules from the subgroups of flavonoids and tannins [9].

In addition to natural sunscreens having a structure and activity similar to synthetic ones, they may also have antioxidant activity [3]. Radiation in the UV-B region that manages to reach the skin causes the production of reactive oxygen species (ROS) and reduces the skin's natural production of antioxidants. In this regard, the presence of antioxidants in products applied to the skin can combat ROS, preventing premature aging and cancer formation [10]. It is estimated that 90% of skin cancer cases are melanoma, of which 86% are related to exposure to UV radiation [11].

Therefore, the addition of extracts in cosmetics has been studied, considering that there is also a reduction in production costs and the obtaining of products that have multifaceted effects [12], and also considering that for these products to proclaim the photoprotective effect, they must have a SPF greater than six to proclaim the sun protection effect [13].

In this sense, Brazil has great potential for exploring extracts for this application, according to Lima et al. [14], 15 to 20% of the world's biodiversity is concentrated in Brazilian territory, containing two of the nineteen global biodiversity hotspot territories. The Cerrado (Brazilian savannah) is one of these, covering 23% of the national territory and presenting the highest level of plant diversity and endemism among the savannahs [15].

The Campomanesia genus has species relevant to this biome [16], with its fruit being considered a symbol of the state of Mato Grosso do Sul as of November 2017, by way of law 5.082, which authorises the use of the fruit of this genus in the touristic dissemination of the state of Mato Grosso do Sul [17]. Studies have evidenced the presence of phenolic compounds and antioxidant activity in several species of this genus [18].

Campomanesia sessiliflora O. Berg species is one of these, regarding which however, there are few studies in the literature [16]. C. sesiliflora is a tree or shrub, with a height between five and 17 meters [19], popularly known as guabirobeira-verde [20]. In the research by Catelan et al. [21], it was shown that the ethanol extracts of C. sessiliflora leaves have photoprotective activity, however there are as yet no studies related to the aqueous extracts.

For the preliminary analysis of sunscreens, spectrophotometric methods are applied [3]. The sun protection factor (SPF) can be calculated by means of empirical calculations based on absorption in the UVB region [21], whereas the critical wavelength is a parameter that determines whether the sunscreen has ample protection [3, 13].

Considering the above information, this research aimed to evaluate the contents of phenolic compounds, flavonoids and tannins, the SPF and the toxicity in A. salina of the aqueous extracts of C. sessiliflora leaves obtained by maceration and infusion.

Materials and Methods

Reagents

Methanol HLPC (Sigma-Aldrick, USA), Folin-Dennis reagent (Sigma-Aldrick, USA), Folin-Ciocalteau reagent (Sigma-Aldrick, USA), aluminum chloride (Sigma-Aldrick, USA), 2,2-diphenyl-1-picrylhydrazril (Sigma-Aldrick, USA).

Equipments

Wiley mill (Marconi, Brazil), Alpha 1-2LD Plus lyophiliser (Martin Christ, Germany), UV/Vis spectrophotometer (Global Trade Technology, Brazil)

Plant material and preparation of extracts

C. sessiliflora O. Berg leaves were collected in Dourados-MS, at the Medicinal Plants Garden of the Federal University of Grande Dourados. The leaves were dried in an air circulation oven at 37 ± 2 °C and ground in a Willey type mill with a 10-mesh sieve. Subsequently, the sample was packaged, labeled, and stored at a temperature of 4 °C.

To obtain the infusion extracts (IE), the powder from the leaves was mixed with water at a concentration of 20 g·L-1, with an initial temperature between 95-100 °C for 10 min in a closed container [16]. In maceration extraction (ME), the leaves were in contact for 24 h at room temperature (25 °C). Afterwards, the extracts were filtered and lyophilised (using the parameters of vacuum 0.045 mbr and temperature of -42 °C) and stored in hermetically sealed flasks. The extracts were solubilised at a concentration of 1 mg·mL-1 in distilled water for the tests of phenolic compounds, flavonoids, tannins, saponins and antioxidant activity and sun protection factor, while for toxicity in A. salina the initial concentration was 2 mg·mL-1.

Contents of phenolic compounds, flavonoids, and tannins

All analyses were performed in triplicate. The content of phenolic compounds was determined based on the Folin-Ciocalteau colorimetric method [22]. The concentration of phenolic compounds was calculated using an analytical curve, using gallic acid as a standard at concentrations of 10, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 µg·mL-1. The slope (a = 0.0009) and linear coefficient (b = 0.0014) were obtained by linear regression. The result was expressed in mg of gallic acid per g of lyophilised extract (mg GAE ·g-1).

The determination of flavonoids followed the methodology proposed by Djeridane et al. [22]. To calculate the flavonoid concentration, an analytical curve was drawn using rutin as a standard, the concentrations of 10, 20, 30, 40 and 50 µg·mL-1 were employed, using linear regression. The values of slope (a = 0.0019) and linear coefficient (b = 0.0105) were obtained, and the result was expressed in mg of rutin per g of lyophilised extract (mg RE·g-1).

The tannin content was determined using the Folin-Denis spectrophotometric method, with tannic acid as reference [23]. To calculate the concentration of tannins, an analytical curve was made using tannic acid at concentrations of 0.1, 10, 20, 30, 40 and 50 µg·mL-1, obtaining the values of the slope (a = 0.0017) and linear coefficient (b = 10.14). The result was expressed in mg of tannic acid per g of lyophilised extract (mg TAE·g-1).

Antioxidant activity of the 2,2-diphenyl-1-picrylhydrazril radical

The antioxidant activity of the extracts was evaluated by the free radical DPPH method (2,2-diphenyl-1-picrylhydrazril) [24]. The experiment was carried out in the dark, with a controlled temperature (25 ± 1ºC) and all tests were carried out in triplicate [24].

The results are presented in minimal inhibitory concentration. The IC50 expresses the minimum concentration of antioxidant necessary to reduce the initial concentration of DPPH by 50% [25]. Based on the sequestering activity obtained from the different sample dilutions, a graph was plotted with the DPPH reduction % on the Y axis and the concentration of extracts (µg mL-1) on the X axis in order to obtain the concentration of the sample capable of reducing DPPH by 50 %. To calculate the IC50, the extracts were prepared in distilled water in dilutions at concentrations of 20, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 µg·mL-1.

Toxicity in A. salina

The toxicity in A. salina test was performed with aqueous extracts according to the methodology described by Meyer et al. [26], with modifications. The A. salina cysts were incubated for 48 h in a solution of synthetic sea salt (20 g·L-1) and 0.7 g·L-1 of sodium bicarbonate (pH: 8), with constant lighting (60 W) and aeration. The evaluation was performed at concentrations of 2000, 1000, 500, 250 and 100 µg·mL-1 in saline solution, determining the lethal dose (LD50). For each concentration tested, three replicates were performed with ten larvae belonging to the second stage with saline solution as a negative control, which followed the same procedure described for the samples. At the end of the 24 h of incubation, the individuals' deaths were counted and the LD50 calculated. To determine the lethal dose for 50%, the concentrations were used based on the mortality percentage. The analyses were performed in triplicate.

Spectrophotometric analysis of the photoprotective action

The exploratory scanning by ultraviolet and visible spectrometry occurred at wavelengths between 200 nm and 600 nm with an interval of 1 nm [21] in a UV/Vis spectrophotometer. The extracts were prepared at a concentration of 1 mg·mL-1 diluted in water.

With the data obtained from the scan for the range between 290 nm and 400 nm, the critical wavelength (λc) was calculated by integrating the spectrum area and determining the wavelength equivalent to 90% of the spectrum area [13, 3] by the use of Orgin Pro 2018 version 9.5 software.

To determine the SPF of the solutions, the in vitro spectrophotometric method was used [27]. Samples at the initial concentration of 1 mg·mL-1 were diluted in water to a concentration of 0.2 mg·mL-1 and then readings were taken in a UV/Vis spectrophotometer registering between 290 and 320 nm, with an interval of 5 nm, using distilled water as a blank. The calculation of the SPF was performed as described by Dutra et al. [27].

Results and Discussion

The maceration extraction method showed greater efficiency in extracting secondary metabolites from the leaves of C. sessiliflora (Table 1), with higher levels of flavonoids and phenolic compounds as compared to infusion. Tannin contents were similar in both samples (Table 1).

Table 1
Quantification of secondary metabolites and toxicity of the aqueous extracts from C sessiliflora leaves
AnalysisInfusionMaceration
Phenolic Compounds (mg GAE·g-1 ± SD)106.50 ± 10.10148.64 ± 1.01
Flavonoids (mg RE·g-1 ± SD)47.58 ± 0.2063.39 ± 0.33
Tannins (mg TAE·g-1 ± SD)0.22 ± 0.010.22 ± 0.01
LD 50 in Artemia salina (µg·mL-1 ± SD)778.55 ± 1.74786.03 ± 2.19
GAE = Gallic acid equivalent; RE = Rutin Equivalent; TAE = Tannic acid equivalent; LD50 = Lethal Dose; SD = Standard deviation.

The greater efficiency in extraction by maceration may be associated with the thermosensitivity of some phenolic compounds [28], as well as the swelling effect of the leaves that facilitates the migration of the compounds to the solvent [29].

Catelan et al. [21] quantified the secondary metabolites of C. sessiliflora leaves for extraction using ethanol, obtaining 299.79 mg RE·g-1 of flavonoids and 435.67 mg GAE·g-1 of phenolic compounds, values higher than those obtained for aqueous extracts (Table 1), indicating that the solvent can influence metabolite contents.

Phytochemical analyses indicate the presence of tannins in the leaves of Campomanesia xanthocarpa O. Berg [30], and Campomanesia guazumifolia (Cambess.) O. Berg [31].

LD50 greater than 1000 µg mL-1 indicates that the compound is non-toxic, concentrations between 500 and 1000 µg·mL-1 indicate low toxicity, 100 to 500 µg·mL-1 show moderate toxicity and below 100 µg ·mL-1 is related to high toxicity [32]. Both forms of preparation had low toxicity.

The hexane extract of the Campomanesia pubescens (DC) O. Berg leaves presented a LD50 of 2200 µg·mL-1 [33], whereas the hexane extracts of the C. adamantium (Cambess.) O. Berg leaves did not present toxicity [34].

Senigali et al. [6] analysed the toxicity of other Cerrado plants regarding the crustacean A. salina, where it was found that the aroeira presents moderate toxicity. Ramos et al. [34] also evaluated the toxicity of hexane extracts in Artemia sp. and they found that there are no signs of toxicity in concentrations below 2 mg·mL-1.

The infusion of C. sessiliflora leaves was studied by Castro et al. [16] in the biological model of Allium cepa L., and it was observed that the extracts do not induce mutagenicity and cell death in concentrations equal to or less than 0.5 mg·mL-1. The hydroethanolic extracts of the leaves of C. xanthocarpa [35] and C. pubescens [36] did not show chronic toxicity in rats. There are as yet no studies in rats related to C. sessiliflora, however the results obtained in A. cepa [16] and in A. salina (Table 1) have been promising regarding the safety of consumption.

According to ANVISA [13], electromagnetic radiation in ultraviolet is between 200 and 400 nm and is divided into three parts: AV-A (320-340 nm), UV-B (290-320 nm) and UV-C (200 -290 nm). Scanning in the UV/Vis region of the infusion of C. sessiliflora leaves indicated a maximum absorption of 244 nm, while maceration showed a maximum absorption of 243 nm (Figure 1), both in the UV-B region.


Figure 1.

Scanning spectra of C. sessiliflora leaf extracts obtained by maceration (a) and infusion (b)

λc is associated with the level of sun protection [37]. According to ANVISA [13], the minimum λc for sunscreens is 370 nm. The two samples are within the range (Table 2), indicating that the extract has a wide radiation absorptivity in the UV region.

The antioxidant activity helps protect the skin by combating reactive oxygen species formed by UV radiation [10]. The extract obtained by maceration required lower concentrations to inhibit 50% of DPPH radicals compared to the extract obtained by infusion (Table 2). This result may be associated with a higher concentration of phenolic compounds in the maceration (Table 1).

Table 2
Sun protection factor critical wavelength and antioxidant activity of aqueous extracts of C sessiliflora leaves
AnalysisInfusionMaceration
SPF9.986.74
λc (nm)386381
IC50 (µg·mL-1 ± SD)54.30 ± 0.2052.37 ± 0.51
SPF = Sun protection factor; λc = Critical wavelength; IC50 = Mean inhibitory concentration of the DPPH radical; SD = Standard deviation.

Reynertson et al. [38] classified the mean inhibitory concentration against DPPH as highly active to antioxidant activity for values below 50 µg·mL-1, moderately active for values between 50 and 100 µg·mL-1, somewhat active between 100 and 200 µg· mL-1 and inactive at values above 200 µg·mL-1 for the DPPH radical test [38]. In this sense, the two extracts showed moderately active antioxidant activity (Table 2).

The extract obtained with methanol:water 50:50 (v/v) of the Byrsonima crassifolia (L.) Rich fruits presents antioxidant activity with a phenolic compounds content of 334.37 mg·g-1 [39]. The ethanol extracts of the Amburana cearensis AC Smith bark and leaves of Croton sonderianus Muell and Sida galheirensis Ulbr contain IC50 of 54.88 µg·mL-1, 51.40 µg·mL-1 and 57.41 µg·mL-1 respectively, with values similar to those analysed extracts [4]. The infusion of C. sessiliflora leaves presented antioxidant activity at different times of the year [40]. The extracts obtained by decoction of C. xanthocarpa leaves showed IC50 against the DPPH 38.47 µg·mL-1 [41].

According to Agência Nacional de Vigilância Sanitária (ANVISA) [13], cosmetics with a SPF greater than two can be considered as multifunctional products, in this context, the extracts are promising for this purpose when considering the SPF obtained and the observed antioxidant activity (Table 2). The extracts obtained by maceration or infusion of C. sessiliflora leaves also presented a photoprotective effect, being classified as low sun protection, and may be applicable for skin that is not very sensitive to sunburn (Table 3).

Table 3
SPF usage classification table according to skin type Adapted from ANVISA [13]
SPFCategoryIndication of use
6.0-14.9Low protectionSkin insensitive to sunburn
15.0-29.9Medium protectionSkin slightly sensitive to sunburn
30.0-49.9High ProtectionSkin very sensitive to sunburn
50-100Very high protectionSkin extremely sensitive to sunburn
SPF = Sun protection factor

The ANVISA and the Food and Drug Administration (FDA) determine that extracts must contain a minimum SPF of six for in vivo tests to be conducted [13, 42].

Different fractions (.-hexane, hydromethanolic ethyl acetate and butyl hydroxytoluene) of the ethyl extract of Campomanesia guaviroba (DC.) Kiaersk have already been analysed via L929 fibroblasts for viability against UV-B radiation, where an increase in viability was observed, with emphasis on the ethyl acetate extract [10].

In this context, aqueous extracts are promising, using a solvent with low impact on extraction and presenting enough SPF for in vivo analysis and formulations of multifunctional products.

Conclusions

Both infusion and maceration of the C. sessiliflora leaves presented photoprotective action, which can be associated with the presence of secondary metabolites such as flavonoids and tannins. The extracts from C. sessiliflora are promising for applications in formulations of multifunctional products and natural cosmetics based on photoprotective and antioxidant activity and also present low toxicity in the A. salina test. The observed SPF justifies future in vivo studies and brings a novel perspective of the C. sessiliflora potential in the elaboration of photoprotective products.

Acknowledgments

To physical engineer Guilherme Santos Macedo for technical support. Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), Financiadora de Inovação e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) TLAC and BFD (Finance Code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CALC (process 312671/2021-0).

References

[1] M. P. J. Lobosco, R. M. C. R. A. Silva, E. R. Pereira, E. C. S. P. Carneiro, A. C. S. Andrade, “A relação entre a educação ambiental e protetores solares naturais: Uma revisão integrativa”, Res. Soc. Dev., vol. 9, nº 6, e158963535, 2020. DOI: 10.33448/rsd-v9i6.3535

[2] M. A. C. Medeiros, B. Santos, F. M. C. Marques, M. F. M. S. Leite, M. M. Simões, R. M. Anjos, L. Brito Júnior, G. L. A. Maia, M. A. S. G. Alves, A. P. Sousa, A. A. Oliveira Filho, “Avaliação da atividade fotoprotetora do extrato aquoso de Rhaphiodon echinus (Nees & Mart.) Schauer”, Scientia plena, vol. 17, nº 4, 2021. DOI: 10.14808/sci.plena.2021.044601

[3] M. A. Aguiar, P. H. G. S. Novelli, “Desenvolvimento de uma formulação cosmética antioxidante e fotoprotetora à base de curcuma”, Rev. Eletrônic. Perspectivas. Ciênc. Tecnol. vol. 12, pp. 24-39, 2020. DOI: 10.22407/1984-5693.2020.v12.p.24-39

[4] A. R. Nunes, I. G. P. Vieira, D. B. Queiroz, A. L. A. B. Leal, S. M. Morais, D. F. Muniz, J. T. Calixto-Junior, H. D. M. Coutinho, “Use of flavonoids and cinnamates, the main photoprotectors with natural origin”, Adv. Pharmacol. Sci., Article ID 5341487, pp. 1-9, 2018. DOI: 10.1155/2018/5341487

[5] R. Pecoraro, E. M. Scalisi, G. Messina, G. Fragalà, S. Ignoto, A. Salvaggio, M. Zimbone, G. Impellizzeri, M. V. Brundo, “Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity”, Microsc. Res. Tech., vol. 84, Issue 3, pp.531-536, 2020. DOI: 10.1002/jemt.23609

[6] R. L. C. Senigali, A. L. S. Ferreira, D. Kratz, M. F. B. Coelho, A. S. R. M. Santos, D. A. Castro, “Toxicidade de extratos vegetais de plantas do cerrado de uso medicinal”, Braz. J. Dev., vol. 6, nº 8, pp. 55308-55317, 2020. DOI: 10.34117/bjdv6n8-088

[7] M. A. C. Medeiros, M. M. Simões; B. Santos, F. M. C. Marques, M. F. M. S. Leite, “Avaliação da atividade fotoprotetora do extrato etanólico de Rhaphiodon echinus Schauer”, Res. Soc. Dev. vol. 9, nº 7, e585974410, 2020. DOI: 10.33448/rsd-v9i7.4410

[8] B. J. M. Arnoso, G. F. Costa, B. Schmidt, “Biodisponibilidade e classificação de compostos fenólicos”, Nutrição Bras. vol. 18, nº 1, pp. 39-48, 2019. DOI: 10.33233/nb.v18i1.1432

[9] M. M. Simões, M. F. M. S. Leite, F. M. C. Marques, B. Santos, M. M. A. C. Medeiros, B. A. Oliveira Filho, “Avaliação in vitro do perfil fitoquímico e fator de proteção solar do extrato aquoso de Plectranthus amboinicus (Lour.) Spreng”, Rev. Bras. Educ. Saúde, vol. 10, nº 1, pp. 150-155, 2020. DOI: 10.18378/rebes.v10i1.7954

[10] L. A. O. Ferreira, C. C. Iwanaga, R. Casagrande, C. V. Nakamura, M. C. T. Truiti, “Estudo preliminar do efeito fotoquimioprotetor de Campomanesia guaviroba frente à radiação UVB”, in: Princípios em Farmácia 2, Cardoso, N. A.; Rocha, R. R.; Laurindo, M. V., Ponta Grossa: Editora Atena, 2019. 94 pp. DOI: 10.22533/at.ed.099190208. ISBN: 978-85-7247-509-9

[11] Skin Cancer Foudation, “Skin cancer facts & statistics: What you need to know”, 2019. [Online]. Available: http://www.skincancer.org/skin-cancer-information/skin-cancer-facts. [Last access: 07 11 2020].

[12] Z. Niziol-Lukaszewska, T. Wasilewski, T. Bujak, K. Gawel-Beben, P. Osika, D. Czerwonka, “Cornus mas L. extract as a multifunctional material for manufacturing cosmetic emulsions”, Chin. J. Nat. Med., vol. 16, nº 4, pp. 284-292, 2018. DOI: 10.1016/S1875-5364(18)30058-X

[13] Anvisa, RESOLUÇÃO - RDC Nº 30, DE 1º DE JUNHO DE 2012. “Aprova o Regulamento Técnico Mercosul sobre Protetores Solares em Cosméticos e dá outras providências”, 2012. Diário Oficial da União. [Online]. Available: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0030_01_06_2012.html. [Last Access: 20 12 2020].

[14] I. M. C. Lima, L. J. Gomes, M. M. Fernandes, “Áreas protegidas como critério de repasse do ICMS Ecológico nos estados brasileiros”, Rev. Bras. Meio Ambiente, vol. 54, pp. 125-145, 2020.DOI: 10.5380/dma.v54i0.66676

[15] N. E. Lima, R. A. Guimarães, E. B. Almeida-Júnior, L. C. Vitorino, R. G. Collevati, “Temporal trends, impact and partnership in floristic and phytosociology literature in the Brazilian Cerrado”, Flora, vol. 273, e151721, 2020. DOI: 10.1016/j.flora.2020.151721

[16] T. L. A. Castro, L. F. Viana, M. S. M. Santos, C. A. L. Cardoso, “Ação antiproliferativa e mutagenicidade da infusão das folhas de Campomanesia sessiliflora no modelo de Allium cepa”, Res. Soc. Dev., vol. 9, nº 7, e625974555, 2020. DOI: 10.33448/rsd-v9i7.4555

[17] Diário da União, Lei Nº 5.082, de 7 de novembro de 2017. “Declara a guavira (Campomanesia sp.) como fruto símbolo do Estado de Mato Grosso do Sul, e dá outras providências. Diário Oficial da União: Estado de Mato Grosso do Sul”, 2017. [Online]. Available: em: https://www.spdo.ms.gov.br/diariodoe/Index/PaginaDocumento/44948/?Pagina=1. [Last Access: 20 12 2020].

[18] L. S. Duarte, T. M. Pereira, V. D. B. Pascoal, A. C. R. F. Pascoal, “Campomanesia genus – A literature review of nonvolatile secondary metabolites, phytochemistry, popular use, biological activities, and toxicology”, Eclética Quim J., vol. 45, nº 2, pp. 12-22, 2020. DOI: 10.26850/1678-4618eqj.v45.2.2020.p12-22

[19] J. Luber, M. I. U. Oliveira, M. F. S. Ferreira, “Flora do Espírito Santo: Campomanesia(Myrtaceae)”, Rodriguésia, vol. 68, nº 5, pp. 1767-1790, 2017. DOI: 10.1590/2175-7860201768514

[20] H. Lorenzi, L. Bacher, M. Lacerda, S. Sartoris, Frutas brasileiras e exóticas cultivadas (de consume in natura). São Paulo: Instituto Plantarum; 2006. 640 pp. ISBN:85-867174-23-2

[21] T. B. S. Catelan, L. Gaiola, B. F. Duarte, C. A. L. Cardoso, “Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia”, J. Photochem. Photobiol. B, vol. 197, e111500, 2019. DOI: 10.1016/j.jphotobiol.2019.04.009

[22] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, “Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds”, Food Chem., vol. 97, nº 1, pp. 654–660, 2006. DOI: 10.1016/j.foodchem.2005.04.028

[23] A. E. Ibe, G. N. Onuoha, A. A. Adeyemi, D. K. Madukwe, J. O. Udobi, “Quantitative analyses of honey samples from four different sources in Abia state, Nigeria”, Int. J. Natural Aplied Sci., vol. 9, nº 2, pp. 107-116, 2013.

[24] A. Kumaran; R. J. Karunakaran “Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus”, Food Chem., vol. 97, pp. 109-114, 2006. DOI: 10.1016/j.foodchem.2005.03.032

[25] G. Sanchez-Gonzales, C. Castro-Rumiche, G. Alvarez-Guzman, J. Flores-García, M. Barriga-Sánchez, “ Compuestos fenólicos y actividad antioxidante de los extractos de la hoja de chirimoya (Annona cherimola Mill)”, Rev. Colomb. Quím., vol. 48, nº 2, pp. 21-26, 2019. DOI: 10.15446/rev.colomb.quim.v48n2.76029.

[26] B. N. Meyer, N. R. Ferrigni, J. E. Putnan, L. B. Jacobsen, D. E. Nichols, J. Mclaughlin, “Brine shrimp: A convenient general bioassay for active plant constituents”, J. Med. Plant Res., vol. 45, nº 1, pp. 31-34, 1982.

[27] E. A. Dutra, D. A. G. C. Oliveira, E. R. M. Kedor-Hackmann, M. I. R. M. Santoro, “Determination of sun protection factor (SPF) of sunscreens by ultravioleta spectrophotometry”, Rev. Bras. Cienc. Farm., vol. 40, nº 3, pp. 381-385, 2004.

[28] C. Henríquez, A. Córdova, S. Almonacid, J. Saavedra, “Kinetic modeling of phenolic compound degradation during drum-drying of aple peel by-products”, J. Food Eng., vol. 143, pp. 146-153, 2014. DOI: 10.1016/j.jfoodeng.2014.06.037

[29] V. C. Rodrigues, M. V. Silva, A. R. Santos, A. A. F. Zielinski, C. W. I. Haminiuk, “Evaluation of hot and cold extraction of bioactive compounds in teas”, Int. J. Food Sci. Technol., vol. 50, pp. 2038-2045, 2015. DOI: 10.1111/ijfs.12858

[30] J. Z. Ktafke, M. A. Silva, T. F. Panigas, K. C. Belli, M. F. Oliveira, M. M. Barichello, F. K. Rigo, M. F. Rossato, A. R. S. Santos, M. G. Pizzolatti, J. Ferreira, P. R. N. Viecili, “Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients”, J. Ethnopharmacol., vol. 127, pp. 299-305, 2010. DOI: 10.1016/j.jep.2009.11.004

[31] N. T. G. Muller, D. Fasolo, R. Vertê, C. V. Ely, D. T. Holz, “Análise Fitoquímica das Folhas de Myrtaceae: Psidium cattleianum Sabine e Campomanesia guazumifolia (Cambess.) O. Berg”, Vivências, vol. 8, nº 14, pp. 65-71, 2012.

[32] A. N. Sandovai, J. W. V. Flores, K. M. Calla, R. A. Alba, H. Lloclla, S. A. Sotero, A. G. Ismiño, M. L. Salazar, “Toxicity in Artemia Salina by hydroalcoholic extracts of monocotyledonous and dicotyledonous varieties of medicinal plants from the Peruvian Amazon”, Chem. Eng. Trans., vol. 79, pp. 367-372, 2020. DOI: 10.3303/CET2079062

[33] C. A. L. Cardoso, J. R. M. Silva, V. M. F. Kataoka, C. S. Brum, N. R. Popi, “Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens “, Rev. Ciênc. Farm. Básica Apl., vol. 29, nº 3, pp. 297-301, 2008.

[34] D. D. Ramos, C. A. L. Cardoso, N. T. Yamamoto, “Avaliação do potencial citotóxico e atividade antioxidante em Campomanesia adamantium (Cambess.) O.Berg (Myrtaceae)”,, Rev. Bras. Biociências, vol. 5, nº 2, pp. 774-776, 2007.

[35] B. E. O. Markman, E. M. Bacchi, E. T. M. Kato, “Anti ulcerogenic effects of Campomanesia xanthocarpa”,, J. Ethnopharmacol., vol. 94, nº 1, pp. 55-57, 2004.

[36] F. M. G. Guerrero, L. R. Zimmerman, E. V. Cardoso, C. A. L. Cardoso, R. T. Perdomo, R. Alva, C. A. Carollo, A. T. Guerrero, “Investigation on the chronical toxicity of guavira leaves (Campomanesia pubescens) in male rats”, Rev. Fitos. vol. 5, pp. 64–72, 2010.

[37] M. M. Donglikar, S. L. Deore, “Development and Evaluation of Herbal Sunscreen”, Pharmacognosy Journal, vol. 9, nº 1, pp. 83-97, 2017. DOI: 10.5530/pj.2017.1.15

[38] K. A. Reynertson, M. J. Basile, E. J. Kenelly, “Antioxidant Potential of Seven Myrtaceous Fruits”, Ethnobot. Res. Apl., vol. 3, pp. 25-36, 2005.

[39] V. R. Souza, P. A. P. Pereira, F. Queiroz, S. V. Borges, J. D. S. Carneiro, “Determination of bioactive compounds, antioxidant activity and chemical composition of cerrado brazilian fruits”, Food Chem., vol. 134, pp. 381-386, 2012. DOI: 10.1016/j.foodchem.2012.02.191

[40] V. M. F. Kataoka, C. A. L. Cardoso, “Avaliação do perfil cromatográfico obtidos por CLAE-DAD e da atividade antioxidante das folhas de espécies Campomanesia sessiliflora (O. Berg) Mattos e Campomanesia xanthocarpa O. Berg”, Rev. Bras. Pl. Med., vol. 15, nº 1, pp. 121-129, 2013.

[41] J. A. Sousa, L. S. Prado, B. L. Alderete, F. B. M. Boaretto, M. C. Allgayer, F. M. Miguel, J. T. Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Corrêa, A. B. F. Ferraz, J. N. Picada, “Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile”, J. Toxicol. Environ. Health Part A, vol. 82, nº 1, pp. 62-74, 2019. DOI: 10.1080/15287394.2018.1562392

[42] FDA. Sunscreen drug products for over-the-counter human use. In: FDA, ed. Code of Federal Regulations, Title 21. USA, 2013.

Notas de autor

claudia@uems.br

HTML generado a partir de XML-JATS4R por

Recibido: 6 de julio de 2021; Revisión solicitada: 27 de octubre de 2021; Aceptado: 14 de febrero de 2022

Abstract

Campomanesia sessiliflora O. Berg is a medicinal plant that is object of very few studies in the literature. In this context, the antioxidant activity, sun protection factor (SPF) and toxicity in Artemia salina Leachs were analysed, as well as the contents of phenolic compounds, flavonoids and tannins in aqueous extracts prepared by infusion and maceration of C. sessiliflora leaves. Maceration showed higher levels of phenolic compounds and flavonoids regarding infusion and the two samples had the same tannin content. The LD50 was similar for the extracts, both were considered as low toxicity in the test with A. salina. Infusion presented a SPF of 9.98, while maceration presented a SPF of 6.74. Maceration presented better contents of secondary metabolites and antioxidant activity and infusion presented a better SPF. The extracts have the potential of incorporation into multifunctional products.

Keywords

Secondary metabolites, Artemia salina , Phenolic Compounds.

Resumen

Campomanesia sessiliflora O. Berg es una planta medicinal que tiene pocos estudios en la literatura. En este contexto, se analizó la actividad antioxidante, factor de protección solar (FPS) y toxicidad en lixiviados de Artemia salina, así como el contenido de compuestos fenólicos, flavonoides y taninos en extractos acuosos preparados por infusión y maceración de hojas de C. sessiliflora. La maceración mostró niveles más altos de compuestos fenólicos y flavonoides, en relación con la infusión, y las dos muestras tuvieron el mismo contenido de taninos. La DL50 fue similar para los extractos, considerándose ambas muestras de baja toxicidad en el ensayo con A. salina. La infusión presentó un FPS de 9,98, mientras que la maceración tuvo un FPS de 6,74. La maceración mostró niveles más altos de metabolitos secundarios y actividad antioxidante y la infusión mostró un mejor FPS. Los extractos muestran potencial para incorporarse a productos multifuncionales.

Palabras clave

metabolitos secundarios, Artemia salina , compuestos fenólicos.

Resumo

Campomanesia sessiliflora O. Berg é uma planta medicinal que apresenta poucos estudos na literatura. Neste contexto, foram analisados a atividade antioxidante, fator de proteção solar (FPS) e toxicidade em Artemia salina Leachs, assim como os teores de compostos fenólicos, flavonoides e taninos dos extratos aquosos preparados por infusão e maceração das folhas de C. sessiliflora. A maceração apresentou maior teores de compostos fenólicos e flavonoides em relação a infusão e as duas amostras apresentaram o mesmo teor de taninos. O DL50 foi semelhante para os extratos, ambas amostras sendo consideradas como baixa toxicidade no ensaio com A. salina. A infusão apresentou FPS de 9,98, enquanto que a maceração o FPS foi de 6,74. A maceração apresentou maiores teores de metabólitos secundários e atividade antioxidante e a infusão apresentou melhor FPS. Os extratos apresentam potencial para a incorporação em produtos multifuncionais.

Palavras-chave

Metabólitos secundários, Artemia salina , Compostos fenólicos.

Introduction

The skin can be subjected to burns, premature aging and harmful neoplasms when exposed to excessive ultraviolet (UV) light, which can trigger skin diseases [1]. Therefore, it is necessary to use photoprotective products that act to protect the skin against this type of radiation [2].

How sunscreens work depends on their chemical composition: Physical filters are composed of inorganic materials that work by scattering and reflecting radiation, whereas organic filters are made up of organic compounds that have an aromatic ring with an ortho electron donor group so that they act by absorbing light through the resonance mechanism, transforming electromagnetic energy into heat or fluorescent light [3].

Despite the importance of using sunscreens, some organic substances can be absorbed, metabolised or accumulated, which can result in skin problems. In this context, natural sunscreens have gained attention due to their diverse biological activities and low toxicity [4].

A common biological model for preliminary toxicity tests is the Artemia salina Leachs. It is widely employed due to its low cost, long storage period for dormant cysts, easy handling, and low tolerance to changes in its breeding environment, with the results indicating possible negative effects on human beings [5, 6].

Plant extracts have shown great potential for being used as natural sunscreens, due to the presence of secondary metabolites [7]. Phenolic compounds are secondary metabolites that help in the defense of the plant and are constituted by two aromatic rings that have one or more hydroxyls (electron donor groups) [8] whose presence has been associated with the photoprotective action of plant extracts, mainly molecules from the subgroups of flavonoids and tannins [9].

In addition to natural sunscreens having a structure and activity similar to synthetic ones, they may also have antioxidant activity [3]. Radiation in the UV-B region that manages to reach the skin causes the production of reactive oxygen species (ROS) and reduces the skin's natural production of antioxidants. In this regard, the presence of antioxidants in products applied to the skin can combat ROS, preventing premature aging and cancer formation [10]. It is estimated that 90% of skin cancer cases are melanoma, of which 86% are related to exposure to UV radiation [11].

Therefore, the addition of extracts in cosmetics has been studied, considering that there is also a reduction in production costs and the obtaining of products that have multifaceted effects [12], and also considering that for these products to proclaim the photoprotective effect, they must have a SPF greater than six to proclaim the sun protection effect [13].

In this sense, Brazil has great potential for exploring extracts for this application, according to Lima et al. [14], 15 to 20% of the world's biodiversity is concentrated in Brazilian territory, containing two of the nineteen global biodiversity hotspot territories. The Cerrado (Brazilian savannah) is one of these, covering 23% of the national territory and presenting the highest level of plant diversity and endemism among the savannahs [15].

The Campomanesia genus has species relevant to this biome [16], with its fruit being considered a symbol of the state of Mato Grosso do Sul as of November 2017, by way of law 5.082, which authorises the use of the fruit of this genus in the touristic dissemination of the state of Mato Grosso do Sul [17]. Studies have evidenced the presence of phenolic compounds and antioxidant activity in several species of this genus [18].

Campomanesia sessiliflora O. Berg species is one of these, regarding which however, there are few studies in the literature [16]. C. sesiliflora is a tree or shrub, with a height between five and 17 meters [19], popularly known as guabirobeira-verde [20]. In the research by Catelan et al. [21], it was shown that the ethanol extracts of C. sessiliflora leaves have photoprotective activity, however there are as yet no studies related to the aqueous extracts.

For the preliminary analysis of sunscreens, spectrophotometric methods are applied [3]. The sun protection factor (SPF) can be calculated by means of empirical calculations based on absorption in the UVB region [21], whereas the critical wavelength is a parameter that determines whether the sunscreen has ample protection [3, 13].

Considering the above information, this research aimed to evaluate the contents of phenolic compounds, flavonoids and tannins, the SPF and the toxicity in A. salina of the aqueous extracts of C. sessiliflora leaves obtained by maceration and infusion.

Materials and Methods

Reagents

Methanol HLPC (Sigma-Aldrick, USA), Folin-Dennis reagent (Sigma-Aldrick, USA), Folin-Ciocalteau reagent (Sigma-Aldrick, USA), aluminum chloride (Sigma-Aldrick, USA), 2,2-diphenyl-1-picrylhydrazril (Sigma-Aldrick, USA).

Equipments

Wiley mill (Marconi, Brazil), Alpha 1-2LD Plus lyophiliser (Martin Christ, Germany), UV/Vis spectrophotometer (Global Trade Technology, Brazil)

Plant material and preparation of extracts

C. sessiliflora O. Berg leaves were collected in Dourados-MS, at the Medicinal Plants Garden of the Federal University of Grande Dourados. The leaves were dried in an air circulation oven at 37 ± 2 °C and ground in a Willey type mill with a 10-mesh sieve. Subsequently, the sample was packaged, labeled, and stored at a temperature of 4 °C.

To obtain the infusion extracts (IE), the powder from the leaves was mixed with water at a concentration of 20 g·L-1, with an initial temperature between 95-100 °C for 10 min in a closed container [16]. In maceration extraction (ME), the leaves were in contact for 24 h at room temperature (25 °C). Afterwards, the extracts were filtered and lyophilised (using the parameters of vacuum 0.045 mbr and temperature of -42 °C) and stored in hermetically sealed flasks. The extracts were solubilised at a concentration of 1 mg·mL-1 in distilled water for the tests of phenolic compounds, flavonoids, tannins, saponins and antioxidant activity and sun protection factor, while for toxicity in A. salina the initial concentration was 2 mg·mL-1.

Contents of phenolic compounds, flavonoids, and tannins

All analyses were performed in triplicate. The content of phenolic compounds was determined based on the Folin-Ciocalteau colorimetric method [22]. The concentration of phenolic compounds was calculated using an analytical curve, using gallic acid as a standard at concentrations of 10, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 µg·mL-1. The slope (a = 0.0009) and linear coefficient (b = 0.0014) were obtained by linear regression. The result was expressed in mg of gallic acid per g of lyophilised extract (mg GAE ·g-1).

The determination of flavonoids followed the methodology proposed by Djeridane et al. [22]. To calculate the flavonoid concentration, an analytical curve was drawn using rutin as a standard, the concentrations of 10, 20, 30, 40 and 50 µg·mL-1 were employed, using linear regression. The values of slope (a = 0.0019) and linear coefficient (b = 0.0105) were obtained, and the result was expressed in mg of rutin per g of lyophilised extract (mg RE·g-1).

The tannin content was determined using the Folin-Denis spectrophotometric method, with tannic acid as reference [23]. To calculate the concentration of tannins, an analytical curve was made using tannic acid at concentrations of 0.1, 10, 20, 30, 40 and 50 µg·mL-1, obtaining the values of the slope (a = 0.0017) and linear coefficient (b = 10.14). The result was expressed in mg of tannic acid per g of lyophilised extract (mg TAE·g-1).

Antioxidant activity of the 2,2-diphenyl-1-picrylhydrazril radical

The antioxidant activity of the extracts was evaluated by the free radical DPPH method (2,2-diphenyl-1-picrylhydrazril) [24]. The experiment was carried out in the dark, with a controlled temperature (25 ± 1ºC) and all tests were carried out in triplicate [24].

The results are presented in minimal inhibitory concentration. The IC50 expresses the minimum concentration of antioxidant necessary to reduce the initial concentration of DPPH by 50% [25]. Based on the sequestering activity obtained from the different sample dilutions, a graph was plotted with the DPPH reduction % on the Y axis and the concentration of extracts (µg mL-1) on the X axis in order to obtain the concentration of the sample capable of reducing DPPH by 50 %. To calculate the IC50, the extracts were prepared in distilled water in dilutions at concentrations of 20, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 µg·mL-1.

Toxicity in A. salina

The toxicity in A. salina test was performed with aqueous extracts according to the methodology described by Meyer et al. [26], with modifications. The A. salina cysts were incubated for 48 h in a solution of synthetic sea salt (20 g·L-1) and 0.7 g·L-1 of sodium bicarbonate (pH: 8), with constant lighting (60 W) and aeration. The evaluation was performed at concentrations of 2000, 1000, 500, 250 and 100 µg·mL-1 in saline solution, determining the lethal dose (LD50). For each concentration tested, three replicates were performed with ten larvae belonging to the second stage with saline solution as a negative control, which followed the same procedure described for the samples. At the end of the 24 h of incubation, the individuals' deaths were counted and the LD50 calculated. To determine the lethal dose for 50%, the concentrations were used based on the mortality percentage. The analyses were performed in triplicate.

Spectrophotometric analysis of the photoprotective action

The exploratory scanning by ultraviolet and visible spectrometry occurred at wavelengths between 200 nm and 600 nm with an interval of 1 nm [21] in a UV/Vis spectrophotometer. The extracts were prepared at a concentration of 1 mg·mL-1 diluted in water.

With the data obtained from the scan for the range between 290 nm and 400 nm, the critical wavelength (λc) was calculated by integrating the spectrum area and determining the wavelength equivalent to 90% of the spectrum area [13, 3] by the use of Orgin Pro 2018 version 9.5 software.

To determine the SPF of the solutions, the in vitro spectrophotometric method was used [27]. Samples at the initial concentration of 1 mg·mL-1 were diluted in water to a concentration of 0.2 mg·mL-1 and then readings were taken in a UV/Vis spectrophotometer registering between 290 and 320 nm, with an interval of 5 nm, using distilled water as a blank. The calculation of the SPF was performed as described by Dutra et al. [27].

Results and Discussion

The maceration extraction method showed greater efficiency in extracting secondary metabolites from the leaves of C. sessiliflora (Table 1), with higher levels of flavonoids and phenolic compounds as compared to infusion. Tannin contents were similar in both samples (Table 1).

Table 1: Quantification of secondary metabolites and toxicity of the aqueous extracts from C sessiliflora leaves

Table 1 Quantification of secondary metabolites and toxicity of the aqueous extracts from C sessiliflora leaves
Analysis Infusion Maceration
Phenolic Compounds (mg GAE·g-1 ± SD) 106.50 ± 10.10 148.64 ± 1.01
Flavonoids (mg RE·g-1 ± SD) 47.58 ± 0.20 63.39 ± 0.33
Tannins (mg TAE·g-1 ± SD) 0.22 ± 0.01 0.22 ± 0.01
LD 50 in Artemia salina (µg·mL-1 ± SD) 778.55 ± 1.74 786.03 ± 2.19

GAE = Gallic acid equivalent; RE = Rutin Equivalent; TAE = Tannic acid equivalent; LD50 = Lethal Dose; SD = Standard deviation.

The greater efficiency in extraction by maceration may be associated with the thermosensitivity of some phenolic compounds [28], as well as the swelling effect of the leaves that facilitates the migration of the compounds to the solvent [29].

Catelan et al. [21] quantified the secondary metabolites of C. sessiliflora leaves for extraction using ethanol, obtaining 299.79 mg RE·g-1 of flavonoids and 435.67 mg GAE·g-1 of phenolic compounds, values higher than those obtained for aqueous extracts (Table 1), indicating that the solvent can influence metabolite contents.

Phytochemical analyses indicate the presence of tannins in the leaves of Campomanesia xanthocarpa O. Berg [30], and Campomanesia guazumifolia (Cambess.) O. Berg [31].

LD50 greater than 1000 µg mL-1 indicates that the compound is non-toxic, concentrations between 500 and 1000 µg·mL-1 indicate low toxicity, 100 to 500 µg·mL-1 show moderate toxicity and below 100 µg ·mL-1 is related to high toxicity [32]. Both forms of preparation had low toxicity.

The hexane extract of the Campomanesia pubescens (DC) O. Berg leaves presented a LD50 of 2200 µg·mL-1 [33], whereas the hexane extracts of the C. adamantium (Cambess.) O. Berg leaves did not present toxicity [34].

Senigali et al. [6] analysed the toxicity of other Cerrado plants regarding the crustacean A. salina, where it was found that the aroeira presents moderate toxicity. Ramos et al. [34] also evaluated the toxicity of hexane extracts in Artemia sp. and they found that there are no signs of toxicity in concentrations below 2 mg·mL-1.

The infusion of C. sessiliflora leaves was studied by Castro et al. [16] in the biological model of Allium cepa L., and it was observed that the extracts do not induce mutagenicity and cell death in concentrations equal to or less than 0.5 mg·mL-1. The hydroethanolic extracts of the leaves of C. xanthocarpa [35] and C. pubescens [36] did not show chronic toxicity in rats. There are as yet no studies in rats related to C. sessiliflora, however the results obtained in A. cepa [16] and in A. salina (Table 1) have been promising regarding the safety of consumption.

According to ANVISA [13], electromagnetic radiation in ultraviolet is between 200 and 400 nm and is divided into three parts: AV-A (320-340 nm), UV-B (290-320 nm) and UV-C (200 -290 nm). Scanning in the UV/Vis region of the infusion of C. sessiliflora leaves indicated a maximum absorption of 244 nm, while maceration showed a maximum absorption of 243 nm (Figure 1), both in the UV-B region.

Figure 1.:

λc is associated with the level of sun protection [37]. According to ANVISA [13], the minimum λc for sunscreens is 370 nm. The two samples are within the range (Table 2), indicating that the extract has a wide radiation absorptivity in the UV region.

The antioxidant activity helps protect the skin by combating reactive oxygen species formed by UV radiation [10]. The extract obtained by maceration required lower concentrations to inhibit 50% of DPPH radicals compared to the extract obtained by infusion (Table 2). This result may be associated with a higher concentration of phenolic compounds in the maceration (Table 1).

Table 2: Sun protection factor critical wavelength and antioxidant activity of aqueous extracts of C sessiliflora leaves

Table 2 Sun protection factor critical wavelength and antioxidant activity of aqueous extracts of C sessiliflora leaves
Analysis Infusion Maceration
SPF 9.98 6.74
λc (nm) 386 381
IC50 (µg·mL-1 ± SD) 54.30 ± 0.20 52.37 ± 0.51

SPF = Sun protection factor; λc = Critical wavelength; IC50 = Mean inhibitory concentration of the DPPH radical; SD = Standard deviation.

Reynertson et al. [38] classified the mean inhibitory concentration against DPPH as highly active to antioxidant activity for values below 50 µg·mL-1, moderately active for values between 50 and 100 µg·mL-1, somewhat active between 100 and 200 µg· mL-1 and inactive at values above 200 µg·mL-1 for the DPPH radical test [38]. In this sense, the two extracts showed moderately active antioxidant activity (Table 2).

The extract obtained with methanol:water 50:50 (v/v) of the Byrsonima crassifolia (L.) Rich fruits presents antioxidant activity with a phenolic compounds content of 334.37 mg·g-1 [39]. The ethanol extracts of the Amburana cearensis AC Smith bark and leaves of Croton sonderianus Muell and Sida galheirensis Ulbr contain IC50 of 54.88 µg·mL-1, 51.40 µg·mL-1 and 57.41 µg·mL-1 respectively, with values similar to those analysed extracts [4]. The infusion of C. sessiliflora leaves presented antioxidant activity at different times of the year [40]. The extracts obtained by decoction of C. xanthocarpa leaves showed IC50 against the DPPH 38.47 µg·mL-1 [41].

According to Agência Nacional de Vigilância Sanitária (ANVISA) [13], cosmetics with a SPF greater than two can be considered as multifunctional products, in this context, the extracts are promising for this purpose when considering the SPF obtained and the observed antioxidant activity (Table 2). The extracts obtained by maceration or infusion of C. sessiliflora leaves also presented a photoprotective effect, being classified as low sun protection, and may be applicable for skin that is not very sensitive to sunburn (Table 3).

Table 3: SPF usage classification table according to skin type Adapted from ANVISA [13]

Table 3 SPF usage classification table according to skin type Adapted from ANVISA [13]
SPF Category Indication of use
6.0-14.9 Low protection Skin insensitive to sunburn
15.0-29.9 Medium protection Skin slightly sensitive to sunburn
30.0-49.9 High Protection Skin very sensitive to sunburn
50-100 Very high protection Skin extremely sensitive to sunburn

SPF = Sun protection factor

The ANVISA and the Food and Drug Administration (FDA) determine that extracts must contain a minimum SPF of six for in vivo tests to be conducted [13, 42].

Different fractions (.-hexane, hydromethanolic ethyl acetate and butyl hydroxytoluene) of the ethyl extract of Campomanesia guaviroba (DC.) Kiaersk have already been analysed via L929 fibroblasts for viability against UV-B radiation, where an increase in viability was observed, with emphasis on the ethyl acetate extract [10].

In this context, aqueous extracts are promising, using a solvent with low impact on extraction and presenting enough SPF for in vivo analysis and formulations of multifunctional products.

Conclusions

Both infusion and maceration of the C. sessiliflora leaves presented photoprotective action, which can be associated with the presence of secondary metabolites such as flavonoids and tannins. The extracts from C. sessiliflora are promising for applications in formulations of multifunctional products and natural cosmetics based on photoprotective and antioxidant activity and also present low toxicity in the A. salina test. The observed SPF justifies future in vivo studies and brings a novel perspective of the C. sessiliflora potential in the elaboration of photoprotective products.

Acknowledgments

To physical engineer Guilherme Santos Macedo for technical support. Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), Financiadora de Inovação e Pesquisas (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) TLAC and BFD (Finance Code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CALC (process 312671/2021-0).

References

[1] M. P. J. Lobosco, R. M. C. R. A. Silva, E. R. Pereira, E. C. S. P. Carneiro, A. C. S. Andrade, “A relação entre a educação ambiental e protetores solares naturais: Uma revisão integrativa”, Res. Soc. Dev., vol. 9, nº 6, e158963535, 2020. DOI: 10.33448/rsd-v9i6.3535

[2] M. A. C. Medeiros, B. Santos, F. M. C. Marques, M. F. M. S. Leite, M. M. Simões, R. M. Anjos, L. Brito Júnior, G. L. A. Maia, M. A. S. G. Alves, A. P. Sousa, A. A. Oliveira Filho, “Avaliação da atividade fotoprotetora do extrato aquoso de Rhaphiodon echinus (Nees & Mart.) Schauer”, Scientia plena, vol. 17, nº 4, 2021. DOI: 10.14808/sci.plena.2021.044601

[3] M. A. Aguiar, P. H. G. S. Novelli, “Desenvolvimento de uma formulação cosmética antioxidante e fotoprotetora à base de curcuma”, Rev. Eletrônic. Perspectivas. Ciênc. Tecnol. vol. 12, pp. 24-39, 2020. DOI: 10.22407/1984-5693.2020.v12.p.24-39

[4] A. R. Nunes, I. G. P. Vieira, D. B. Queiroz, A. L. A. B. Leal, S. M. Morais, D. F. Muniz, J. T. Calixto-Junior, H. D. M. Coutinho, “Use of flavonoids and cinnamates, the main photoprotectors with natural origin”, Adv. Pharmacol. Sci., Article ID 5341487, pp. 1-9, 2018. DOI: 10.1155/2018/5341487

[5] R. Pecoraro, E. M. Scalisi, G. Messina, G. Fragalà, S. Ignoto, A. Salvaggio, M. Zimbone, G. Impellizzeri, M. V. Brundo, “Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity”, Microsc. Res. Tech., vol. 84, Issue 3, pp.531-536, 2020. DOI: 10.1002/jemt.23609

[6] R. L. C. Senigali, A. L. S. Ferreira, D. Kratz, M. F. B. Coelho, A. S. R. M. Santos, D. A. Castro, “Toxicidade de extratos vegetais de plantas do cerrado de uso medicinal”, Braz. J. Dev., vol. 6, nº 8, pp. 55308-55317, 2020. DOI: 10.34117/bjdv6n8-088

[7] M. A. C. Medeiros, M. M. Simões; B. Santos, F. M. C. Marques, M. F. M. S. Leite, “Avaliação da atividade fotoprotetora do extrato etanólico de Rhaphiodon echinus Schauer”, Res. Soc. Dev. vol. 9, nº 7, e585974410, 2020. DOI: 10.33448/rsd-v9i7.4410

[8] B. J. M. Arnoso, G. F. Costa, B. Schmidt, “Biodisponibilidade e classificação de compostos fenólicos”, Nutrição Bras. vol. 18, nº 1, pp. 39-48, 2019. DOI: 10.33233/nb.v18i1.1432

[9] M. M. Simões, M. F. M. S. Leite, F. M. C. Marques, B. Santos, M. M. A. C. Medeiros, B. A. Oliveira Filho, “Avaliação in vitro do perfil fitoquímico e fator de proteção solar do extrato aquoso de Plectranthus amboinicus (Lour.) Spreng”, Rev. Bras. Educ. Saúde, vol. 10, nº 1, pp. 150-155, 2020. DOI: 10.18378/rebes.v10i1.7954

[10] L. A. O. Ferreira, C. C. Iwanaga, R. Casagrande, C. V. Nakamura, M. C. T. Truiti, “Estudo preliminar do efeito fotoquimioprotetor de Campomanesia guaviroba frente à radiação UVB”, in: Princípios em Farmácia 2, Cardoso, N. A.; Rocha, R. R.; Laurindo, M. V., Ponta Grossa: Editora Atena, 2019. 94 pp. DOI: 10.22533/at.ed.099190208. ISBN: 978-85-7247-509-9

[11] Skin Cancer Foudation, “Skin cancer facts & statistics: What you need to know”, 2019. [Online]. Available: http://www.skincancer.org/skin-cancer-information/skin-cancer-facts. [Last access: 07 11 2020].[Link]

[12] Z. Niziol-Lukaszewska, T. Wasilewski, T. Bujak, K. Gawel-Beben, P. Osika, D. Czerwonka, “Cornus mas L. extract as a multifunctional material for manufacturing cosmetic emulsions”, Chin. J. Nat. Med., vol. 16, nº 4, pp. 284-292, 2018. DOI: 10.1016/S1875-5364(18)30058-X

[13] Anvisa, RESOLUÇÃO - RDC Nº 30, DE 1º DE JUNHO DE 2012. “Aprova o Regulamento Técnico Mercosul sobre Protetores Solares em Cosméticos e dá outras providências”, 2012. Diário Oficial da União. [Online]. Available: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0030_01_06_2012.html. [Last Access: 20 12 2020].[Link]

[14] I. M. C. Lima, L. J. Gomes, M. M. Fernandes, “Áreas protegidas como critério de repasse do ICMS Ecológico nos estados brasileiros”, Rev. Bras. Meio Ambiente, vol. 54, pp. 125-145, 2020.DOI: 10.5380/dma.v54i0.66676

[15] N. E. Lima, R. A. Guimarães, E. B. Almeida-Júnior, L. C. Vitorino, R. G. Collevati, “Temporal trends, impact and partnership in floristic and phytosociology literature in the Brazilian Cerrado”, Flora, vol. 273, e151721, 2020. DOI: 10.1016/j.flora.2020.151721

[16] T. L. A. Castro, L. F. Viana, M. S. M. Santos, C. A. L. Cardoso, “Ação antiproliferativa e mutagenicidade da infusão das folhas de Campomanesia sessiliflora no modelo de Allium cepa”, Res. Soc. Dev., vol. 9, nº 7, e625974555, 2020. DOI: 10.33448/rsd-v9i7.4555

[17] Diário da União, Lei Nº 5.082, de 7 de novembro de 2017. “Declara a guavira (Campomanesia sp.) como fruto símbolo do Estado de Mato Grosso do Sul, e dá outras providências. Diário Oficial da União: Estado de Mato Grosso do Sul”, 2017. [Online]. Available: em: https://www.spdo.ms.gov.br/diariodoe/Index/PaginaDocumento/44948/?Pagina=1. [Last Access: 20 12 2020].[Link]

[18] L. S. Duarte, T. M. Pereira, V. D. B. Pascoal, A. C. R. F. Pascoal, “Campomanesia genus – A literature review of nonvolatile secondary metabolites, phytochemistry, popular use, biological activities, and toxicology”, Eclética Quim J., vol. 45, nº 2, pp. 12-22, 2020. DOI: 10.26850/1678-4618eqj.v45.2.2020.p12-22

[19] J. Luber, M. I. U. Oliveira, M. F. S. Ferreira, “Flora do Espírito Santo: Campomanesia(Myrtaceae)”, Rodriguésia, vol. 68, nº 5, pp. 1767-1790, 2017. DOI: 10.1590/2175-7860201768514

[20] H. Lorenzi, L. Bacher, M. Lacerda, S. Sartoris, Frutas brasileiras e exóticas cultivadas (de consume in natura). São Paulo: Instituto Plantarum; 2006. 640 pp. ISBN:85-867174-23-2

[21] T. B. S. Catelan, L. Gaiola, B. F. Duarte, C. A. L. Cardoso, “Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia”, J. Photochem. Photobiol. B, vol. 197, e111500, 2019. DOI: 10.1016/j.jphotobiol.2019.04.009

[22] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, “Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds”, Food Chem., vol. 97, nº 1, pp. 654–660, 2006. DOI: 10.1016/j.foodchem.2005.04.028

[23] A. E. Ibe, G. N. Onuoha, A. A. Adeyemi, D. K. Madukwe, J. O. Udobi, “Quantitative analyses of honey samples from four different sources in Abia state, Nigeria”, Int. J. Natural Aplied Sci., vol. 9, nº 2, pp. 107-116, 2013.

[24] A. Kumaran; R. J. Karunakaran “Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus”, Food Chem., vol. 97, pp. 109-114, 2006. DOI: 10.1016/j.foodchem.2005.03.032

[25] G. Sanchez-Gonzales, C. Castro-Rumiche, G. Alvarez-Guzman, J. Flores-García, M. Barriga-Sánchez, “ Compuestos fenólicos y actividad antioxidante de los extractos de la hoja de chirimoya (Annona cherimola Mill)”, Rev. Colomb. Quím., vol. 48, nº 2, pp. 21-26, 2019. DOI: 10.15446/rev.colomb.quim.v48n2.76029.

[26] B. N. Meyer, N. R. Ferrigni, J. E. Putnan, L. B. Jacobsen, D. E. Nichols, J. Mclaughlin, “Brine shrimp: A convenient general bioassay for active plant constituents”, J. Med. Plant Res., vol. 45, nº 1, pp. 31-34, 1982.

[27] E. A. Dutra, D. A. G. C. Oliveira, E. R. M. Kedor-Hackmann, M. I. R. M. Santoro, “Determination of sun protection factor (SPF) of sunscreens by ultravioleta spectrophotometry”, Rev. Bras. Cienc. Farm., vol. 40, nº 3, pp. 381-385, 2004.

[28] C. Henríquez, A. Córdova, S. Almonacid, J. Saavedra, “Kinetic modeling of phenolic compound degradation during drum-drying of aple peel by-products”, J. Food Eng., vol. 143, pp. 146-153, 2014. DOI: 10.1016/j.jfoodeng.2014.06.037

[29] V. C. Rodrigues, M. V. Silva, A. R. Santos, A. A. F. Zielinski, C. W. I. Haminiuk, “Evaluation of hot and cold extraction of bioactive compounds in teas”, Int. J. Food Sci. Technol., vol. 50, pp. 2038-2045, 2015. DOI: 10.1111/ijfs.12858

[30] J. Z. Ktafke, M. A. Silva, T. F. Panigas, K. C. Belli, M. F. Oliveira, M. M. Barichello, F. K. Rigo, M. F. Rossato, A. R. S. Santos, M. G. Pizzolatti, J. Ferreira, P. R. N. Viecili, “Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients”, J. Ethnopharmacol., vol. 127, pp. 299-305, 2010. DOI: 10.1016/j.jep.2009.11.004

[31] N. T. G. Muller, D. Fasolo, R. Vertê, C. V. Ely, D. T. Holz, “Análise Fitoquímica das Folhas de Myrtaceae: Psidium cattleianum Sabine e Campomanesia guazumifolia (Cambess.) O. Berg”, Vivências, vol. 8, nº 14, pp. 65-71, 2012.

[32] A. N. Sandovai, J. W. V. Flores, K. M. Calla, R. A. Alba, H. Lloclla, S. A. Sotero, A. G. Ismiño, M. L. Salazar, “Toxicity in Artemia Salina by hydroalcoholic extracts of monocotyledonous and dicotyledonous varieties of medicinal plants from the Peruvian Amazon”, Chem. Eng. Trans., vol. 79, pp. 367-372, 2020. DOI: 10.3303/CET2079062

[33] C. A. L. Cardoso, J. R. M. Silva, V. M. F. Kataoka, C. S. Brum, N. R. Popi, “Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens “, Rev. Ciênc. Farm. Básica Apl., vol. 29, nº 3, pp. 297-301, 2008.

[34] D. D. Ramos, C. A. L. Cardoso, N. T. Yamamoto, “Avaliação do potencial citotóxico e atividade antioxidante em Campomanesia adamantium (Cambess.) O.Berg (Myrtaceae)”,, Rev. Bras. Biociências, vol. 5, nº 2, pp. 774-776, 2007.

[35] B. E. O. Markman, E. M. Bacchi, E. T. M. Kato, “Anti ulcerogenic effects of Campomanesia xanthocarpa”,, J. Ethnopharmacol., vol. 94, nº 1, pp. 55-57, 2004.

[36] F. M. G. Guerrero, L. R. Zimmerman, E. V. Cardoso, C. A. L. Cardoso, R. T. Perdomo, R. Alva, C. A. Carollo, A. T. Guerrero, “Investigation on the chronical toxicity of guavira leaves (Campomanesia pubescens) in male rats”, Rev. Fitos. vol. 5, pp. 64–72, 2010.

[37] M. M. Donglikar, S. L. Deore, “Development and Evaluation of Herbal Sunscreen”, Pharmacognosy Journal, vol. 9, nº 1, pp. 83-97, 2017. DOI: 10.5530/pj.2017.1.15

[38] K. A. Reynertson, M. J. Basile, E. J. Kenelly, “Antioxidant Potential of Seven Myrtaceous Fruits”, Ethnobot. Res. Apl., vol. 3, pp. 25-36, 2005.

[39] V. R. Souza, P. A. P. Pereira, F. Queiroz, S. V. Borges, J. D. S. Carneiro, “Determination of bioactive compounds, antioxidant activity and chemical composition of cerrado brazilian fruits”, Food Chem., vol. 134, pp. 381-386, 2012. DOI: 10.1016/j.foodchem.2012.02.191

[40] V. M. F. Kataoka, C. A. L. Cardoso, “Avaliação do perfil cromatográfico obtidos por CLAE-DAD e da atividade antioxidante das folhas de espécies Campomanesia sessiliflora (O. Berg) Mattos e Campomanesia xanthocarpa O. Berg”, Rev. Bras. Pl. Med., vol. 15, nº 1, pp. 121-129, 2013.

[41] J. A. Sousa, L. S. Prado, B. L. Alderete, F. B. M. Boaretto, M. C. Allgayer, F. M. Miguel, J. T. Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Corrêa, A. B. F. Ferraz, J. N. Picada, “Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile”, J. Toxicol. Environ. Health Part A, vol. 82, nº 1, pp. 62-74, 2019. DOI: 10.1080/15287394.2018.1562392

[42] FDA. Sunscreen drug products for over-the-counter human use. In: FDA, ed. Code of Federal Regulations, Title 21. USA, 2013.

Referencias

M. P. J. Lobosco, R. M. C. R. A. Silva, E. R. Pereira, E. C. S. P. Carneiro, A. C. S. Andrade, “A relação entre a educação ambiental e protetores solares naturais: Uma revisão integrativa”, Res. Soc. Dev., vol. 9, nº 6, e158963535, 2020. DOI: 10.33448/rsd-v9i6.3535 DOI: https://doi.org/10.33448/rsd-v9i6.3535

M. A. C. Medeiros, B. Santos, F. M. C. Marques, M. F. M. S. Leite, M. M. Simões, R. M. Anjos, L. Brito Júnior, G. L. A. Maia, M. A. S. G. Alves, A. P. Sousa, A. A. Oliveira Filho, “Avaliação da atividade fotoprotetora do extrato aquoso de Rhaphiodon echinus (Nees & Mart.) Schauer”, Scientia plena, vol. 17, nº 4, 2021. DOI: 10.14808/sci.plena.2021.044601 DOI: https://doi.org/10.14808/sci.plena.2021.044601

M. A. Aguiar, P. H. G. S. Novelli, “Desenvolvimento de uma formulação cosmética antioxidante e fotoprotetora à base de curcuma”, Rev. Eletrônic. Perspectivas. Ciênc. Tecnol. vol. 12, pp. 24-39, 2020. DOI: 10.22407/1984-5693.2020.v12.p.24-39

A. R. Nunes, I. G. P. Vieira, D. B. Queiroz, A. L. A. B. Leal, S. M. Morais, D. F. Muniz, J. T. Calixto-Junior, H. D. M. Coutinho, “Use of flavonoids and cinnamates, the main photoprotectors with natural origin”, Adv. Pharmacol. Sci., Article ID 5341487, pp. 1-9, 2018. DOI: 10.1155/2018/5341487 DOI: https://doi.org/10.1155/2018/5341487

R. Pecoraro, E. M. Scalisi, G. Messina, G. Fragalà, S. Ignoto, A. Salvaggio, M. Zimbone, G. Impellizzeri, M. V. Brundo, “Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity”, Microsc. Res. Tech., vol. 84, Issue 3, pp.531-536, 2020. DOI: 10.1002/jemt.23609 DOI: https://doi.org/10.1002/jemt.23609

R. L. C. Senigali, A. L. S. Ferreira, D. Kratz, M. F. B. Coelho, A. S. R. M. Santos, D. A. Castro, “Toxicidade de extratos vegetais de plantas do cerrado de uso medicinal”, Braz. J. Dev., vol. 6, nº 8, pp. 55308-55317, 2020. DOI: 10.34117/bjdv6n8-088 DOI: https://doi.org/10.34117/bjdv6n8-088

M. A. C. Medeiros, M. M. Simões; B. Santos, F. M. C. Marques, M. F. M. S. Leite, “Avaliação da atividade fotoprotetora do extrato etanólico de Rhaphiodon echinus Schauer”, Res. Soc. Dev. vol. 9, nº 7, e585974410, 2020. DOI: 10.33448/rsd-v9i7.4410 DOI: https://doi.org/10.33448/rsd-v9i7.4410

B. J. M. Arnoso, G. F. Costa, B. Schmidt, “Biodisponibilidade e classificação de compostos fenólicos”, Nutrição Bras. vol. 18, nº 1, pp. 39-48, 2019. DOI: 10.33233/nb.v18i1.1432 DOI: https://doi.org/10.33233/nb.v18i1.1432

M. M. Simões, M. F. M. S. Leite, F. M. C. Marques, B. Santos, M. M. A. C. Medeiros, B. A. Oliveira Filho, “Avaliação in vitro do perfil fitoquímico e fator de proteção solar do extrato aquoso de Plectranthus amboinicus (Lour.) Spreng”, Rev. Bras. Educ. Saúde, vol. 10, nº 1, pp. 150-155, 2020. DOI: 10.18378/rebes.v10i1.7954

L. A. O. Ferreira, C. C. Iwanaga, R. Casagrande, C. V. Nakamura, M. C. T. Truiti, “Estudo preliminar do efeito fotoquimioprotetor de Campomanesia guaviroba frente à radiação UVB”, in: Princípios em Farmácia 2, Cardoso, N. A.; Rocha, R. R.; Laurindo, M. V., Ponta Grossa: Editora Atena, 2019. 94 pp. DOI: 10.22533/at.ed.099190208. ISBN: 978-85-7247-509-9 DOI: https://doi.org/10.22533/at.ed.0991902082

Skin Cancer Foudation, “Skin cancer facts & statistics: What you need to know”, 2019. [Online]. Available: http://www.skincancer.org/skin-cancer-information/skin-cancer-facts. [Last access: 07 11 2020].

Z. Niziol-Lukaszewska, T. Wasilewski, T. Bujak, K. Gawel-Beben, P. Osika, D. Czerwonka, “Cornus mas L. extract as a multifunctional material for manufacturing cosmetic emulsions”, Chin. J. Nat. Med., vol. 16, nº 4, pp. 284-292, 2018. DOI: 10.1016/S1875-5364(18)30058-X DOI: https://doi.org/10.1016/S1875-5364(18)30058-X

Anvisa, RESOLUÇÃO - RDC Nº 30, DE 1º DE JUNHO DE 2012. “Aprova o Regulamento Técnico Mercosul sobre Protetores Solares em Cosméticos e dá outras providências”, 2012. Diário Oficial da União. [Online]. Available: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0030_01_06_2012.html. [Last Access: 20 12 2020].

I. M. C. Lima, L. J. Gomes, M. M. Fernandes, “Áreas protegidas como critério de repasse do ICMS Ecológico nos estados brasileiros”, Rev. Bras. Meio Ambiente, vol. 54, pp. 125-145, 2020.DOI: 10.5380/dma.v54i0.66676 DOI: https://doi.org/10.5380/dma.v54i0.66676

N. E. Lima, R. A. Guimarães, E. B. Almeida-Júnior, L. C. Vitorino, R. G. Collevati, “Temporal trends, impact and partnership in floristic and phytosociology literature in the Brazilian Cerrado”, Flora, vol. 273, e151721, 2020. DOI: 10.1016/j.flora.2020.151721 DOI: https://doi.org/10.1016/j.flora.2020.151721

T. L. A. Castro, L. F. Viana, M. S. M. Santos, C. A. L. Cardoso, “Ação antiproliferativa e mutagenicidade da infusão das folhas de Campomanesia sessiliflora no modelo de Allium cepa”, Res. Soc. Dev., vol. 9, nº 7, e625974555, 2020. DOI: 10.33448/rsd-v9i7.4555 DOI: https://doi.org/10.33448/rsd-v9i7.4555

Diário da União, Lei Nº 5.082, de 7 de novembro de 2017. “Declara a guavira (Campomanesia sp.) como fruto símbolo do Estado de Mato Grosso do Sul, e dá outras providências. Diário Oficial da União: Estado de Mato Grosso do Sul”, 2017. [Online]. Available: em: https://www.spdo.ms.gov.br/diariodoe/Index/PaginaDocumento/44948/?Pagina=1. [Last Access: 20 12 2020].

L. S. Duarte, T. M. Pereira, V. D. B. Pascoal, A. C. R. F. Pascoal, “Campomanesia genus – A literature review of nonvolatile secondary metabolites, phytochemistry, popular use, biological activities, and toxicology”, Eclética Quim J., vol. 45, nº 2, pp. 12-22, 2020. DOI: 10.26850/1678-4618eqj.v45.2.2020.p12-22 DOI: https://doi.org/10.26850/1678-4618eqj.v45.2.2020.p12-22

J. Luber, M. I. U. Oliveira, M. F. S. Ferreira, “Flora do Espírito Santo: Campomanesia (Myrtaceae)”, Rodriguésia, vol. 68, nº 5, pp. 1767-1790, 2017. DOI: 10.1590/2175-7860201768514 DOI: https://doi.org/10.1590/2175-7860201768514

H. Lorenzi, L. Bacher, M. Lacerda, S. Sartoris, Frutas brasileiras e exóticas cultivadas (de consume in natura). São Paulo: Instituto Plantarum; 2006. 640 pp. ISBN:85-867174-23-2

T. B. S. Catelan, L. Gaiola, B. F. Duarte, C. A. L. Cardoso, “Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia”, J. Photochem. Photobiol. B, vol. 197, e111500, 2019. DOI: 10.1016/j.jphotobiol.2019.04.009 DOI: https://doi.org/10.1016/j.jphotobiol.2019.04.009

A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, “Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds”, Food Chem., vol. 97, nº 1, pp. 654–660, 2006. DOI: 10.1016/j.foodchem.2005.04.028 DOI: https://doi.org/10.1016/j.foodchem.2005.04.028

A. E. Ibe, G. N. Onuoha, A. A. Adeyemi, D. K. Madukwe, J. O. Udobi, “Quantitative analyses of honey samples from four different sources in Abia state, Nigeria”, Int. J. Natural Aplied Sci., vol. 9, nº 2, pp. 107-116, 2013.

A. Kumaran; R. J. Karunakaran “Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus”, Food Chem., vol. 97, pp. 109-114, 2006. DOI: 10.1016/j.foodchem.2005.03.032 DOI: https://doi.org/10.1016/j.foodchem.2005.03.032

G. Sanchez-Gonzales, C. Castro-Rumiche, G. Alvarez-Guzman, J. Flores-García, M. Barriga-Sánchez, “ Compuestos fenólicos y actividad antioxidante de los extractos de la hoja de chirimoya (Annona cherimola Mill)”, Rev. Colomb. Quím., vol. 48, nº 2, pp. 21-26, 2019. DOI: 10.15446/rev.colomb.quim.v48n2.76029. DOI: https://doi.org/10.15446/rev.colomb.quim.v48n2.76029

B. N. Meyer, N. R. Ferrigni, J. E. Putnan, L. B. Jacobsen, D. E. Nichols, J. Mclaughlin, “Brine shrimp: A convenient general bioassay for active plant constituents”, J. Med. Plant Res., vol. 45, nº 1, pp. 31-34, 1982. DOI: https://doi.org/10.1055/s-2007-971236

E. A. Dutra, D. A. G. C. Oliveira, E. R. M. Kedor-Hackmann, M. I. R. M. Santoro, “Determination of sun protection factor (SPF) of sunscreens by ultravioleta spectrophotometry”, Rev. Bras. Cienc. Farm., vol. 40, nº 3, pp. 381-385, 2004. DOI: https://doi.org/10.1590/S1516-93322004000300014

C. Henríquez, A. Córdova, S. Almonacid, J. Saavedra, “Kinetic modeling of phenolic compound degradation during drum-drying of aple peel by-products”, J. Food Eng., vol. 143, pp. 146-153, 2014. DOI: 10.1016/j.jfoodeng.2014.06.037 DOI: https://doi.org/10.1016/j.jfoodeng.2014.06.037

V. C. Rodrigues, M. V. Silva, A. R. Santos, A. A. F. Zielinski, C. W. I. Haminiuk, “Evaluation of hot and cold extraction of bioactive compounds in teas”, Int. J. Food Sci. Technol., vol. 50, pp. 2038-2045, 2015. DOI: 10.1111/ijfs.12858 DOI: https://doi.org/10.1111/ijfs.12858

J. Z. Ktafke, M. A. Silva, T. F. Panigas, K. C. Belli, M. F. Oliveira, M. M. Barichello, F. K. Rigo, M. F. Rossato, A. R. S. Santos, M. G. Pizzolatti, J. Ferreira, P. R. N. Viecili, “Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients”, J. Ethnopharmacol., vol. 127, pp. 299-305, 2010. DOI: 10.1016/j.jep.2009.11.004 DOI: https://doi.org/10.1016/j.jep.2009.11.004

N. T. G. Muller, D. Fasolo, R. Vertê, C. V. Ely, D. T. Holz, “Análise Fitoquímica das Folhas de Myrtaceae: Psidium cattleianum Sabine e Campomanesia guazumifolia (Cambess.) O. Berg”, Vivências, vol. 8, nº 14, pp. 65-71, 2012.

A. N. Sandovai, J. W. V. Flores, K. M. Calla, R. A. Alba, H. Lloclla, S. A. Sotero, A. G. Ismiño, M. L. Salazar, “Toxicity in Artemia Salina by hydroalcoholic extracts of monocotyledonous and dicotyledonous varieties of medicinal plants from the Peruvian Amazon”, Chem. Eng. Trans., vol. 79, pp. 367-372, 2020. DOI: 10.3303/CET2079062

C. A. L. Cardoso, J. R. M. Silva, V. M. F. Kataoka, C. S. Brum, N. R. Popi, “Avaliação da atividade antioxidante, toxicidade e composição química por CG-EM do extrato hexânico das folhas de Campomanesia pubescens “, Rev. Ciênc. Farm. Básica Apl., vol. 29, nº 3, pp. 297-301, 2008.

D. D. Ramos, C. A. L. Cardoso, N. T. Yamamoto, “Avaliação do potencial citotóxico e atividade antioxidante em Campomanesia adamantium (Cambess.) O.Berg (Myrtaceae)”,, Rev. Bras. Biociências, vol. 5, nº 2, pp. 774-776, 2007.

B. E. O. Markman, E. M. Bacchi, E. T. M. Kato, “Anti ulcerogenic effects of Campomanesia xanthocarpa”,, J. Ethnopharmacol., vol. 94, nº 1, pp. 55-57, 2004. DOI: https://doi.org/10.1016/j.jep.2004.04.025

F. M. G. Guerrero, L. R. Zimmerman, E. V. Cardoso, C. A. L. Cardoso, R. T. Perdomo, R. Alva, C. A. Carollo, A. T. Guerrero, “Investigation on the chronical toxicity of guavira leaves (Campomanesia pubescens) in male rats”, Rev. Fitos. vol. 5, pp. 64–72, 2010.

M. M. Donglikar, S. L. Deore, “Development and Evaluation of Herbal Sunscreen”, Pharmacognosy Journal, vol. 9, nº 1, pp. 83-97, 2017. DOI: 10.5530/pj.2017.1.15 DOI: https://doi.org/10.5530/pj.2017.1.15

K. A. Reynertson, M. J. Basile, E. J. Kenelly, “Antioxidant Potential of Seven Myrtaceous Fruits”, Ethnobot. Res. Apl., vol. 3, pp. 25-36, 2005. DOI: https://doi.org/10.17348/era.3.0.25-36

V. R. Souza, P. A. P. Pereira, F. Queiroz, S. V. Borges, J. D. S. Carneiro, “Determination of bioactive compounds, antioxidant activity and chemical composition of cerrado brazilian fruits”, Food Chem., vol. 134, pp. 381-386, 2012. DOI: 10.1016/j.foodchem.2012.02.191 DOI: https://doi.org/10.1016/j.foodchem.2012.02.191

V. M. F. Kataoka, C. A. L. Cardoso, “Avaliação do perfil cromatográfico obtidos por CLAE-DAD e da atividade antioxidante das folhas de espécies Campomanesia sessiliflora (O. Berg) Mattos e Campomanesia xanthocarpa O. Berg”, Rev. Bras. Pl. Med., vol. 15, nº 1, pp. 121-129, 2013. DOI: https://doi.org/10.1590/S1516-05722013000100017

J. A. Sousa, L. S. Prado, B. L. Alderete, F. B. M. Boaretto, M. C. Allgayer, F. M. Miguel, J. T. Sousa, N. P. Marroni, M. L. B. Lemes, D. S. Corrêa, A. B. F. Ferraz, J. N. Picada, “Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile”, J. Toxicol. Environ. Health Part A, vol. 82, nº 1, pp. 62-74, 2019. DOI: 10.1080/15287394.2018.1562392 DOI: https://doi.org/10.1080/15287394.2018.1562392

FDA. Sunscreen drug products for over-the-counter human use. In: FDA, ed. Code of Federal Regulations, Title 21. USA, 2013.

Cómo citar

IEEE

[1]
T. L. A. de Castro, B. D. Ferreira, y C. A. L. Cardoso, «Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg», Rev. Colomb. Quim., vol. 50, n.º 3, pp. 10–15, jun. 2022.

ACM

[1]
Castro, T.L.A. de, Ferreira, B.D. y Cardoso, C.A.L. 2022. Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Revista Colombiana de Química. 50, 3 (jun. 2022), 10–15. DOI:https://doi.org/10.15446/rev.colomb.quim.v50n3.97095.

ACS

(1)
Castro, T. L. A. de; Ferreira, B. D.; Cardoso, C. A. L. Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Rev. Colomb. Quim. 2022, 50, 10-15.

APA

Castro, T. L. A. de, Ferreira, B. D. y Cardoso, C. A. L. (2022). Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Revista Colombiana de Química, 50(3), 10–15. https://doi.org/10.15446/rev.colomb.quim.v50n3.97095

ABNT

CASTRO, T. L. A. de; FERREIRA, B. D.; CARDOSO, C. A. L. Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Revista Colombiana de Química, [S. l.], v. 50, n. 3, p. 10–15, 2022. DOI: 10.15446/rev.colomb.quim.v50n3.97095. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/97095. Acesso em: 25 abr. 2024.

Chicago

Castro, Thiago Luis Aguayo de, Bianca Duarte Ferreira, y Claudia Andrea Lima Cardoso. 2022. «Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg». Revista Colombiana De Química 50 (3):10-15. https://doi.org/10.15446/rev.colomb.quim.v50n3.97095.

Harvard

Castro, T. L. A. de, Ferreira, B. D. y Cardoso, C. A. L. (2022) «Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg», Revista Colombiana de Química, 50(3), pp. 10–15. doi: 10.15446/rev.colomb.quim.v50n3.97095.

MLA

Castro, T. L. A. de, B. D. Ferreira, y C. A. L. Cardoso. «Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg». Revista Colombiana de Química, vol. 50, n.º 3, junio de 2022, pp. 10-15, doi:10.15446/rev.colomb.quim.v50n3.97095.

Turabian

Castro, Thiago Luis Aguayo de, Bianca Duarte Ferreira, y Claudia Andrea Lima Cardoso. «Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg». Revista Colombiana de Química 50, no. 3 (junio 29, 2022): 10–15. Accedido abril 25, 2024. https://revistas.unal.edu.co/index.php/rcolquim/article/view/97095.

Vancouver

1.
Castro TLA de, Ferreira BD, Cardoso CAL. Photoprotective action, antioxidant activity, and toxicity of aqueous extracts of Campomanesia sessiliflora O. Berg. Rev. Colomb. Quim. [Internet]. 29 de junio de 2022 [citado 25 de abril de 2024];50(3):10-5. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/97095

Descargar cita

CrossRef Cited-by

CrossRef citations4

1. Thiago Luis Aguayo de Castro, Taline Baganha Stefanello Catelan, João Víctor de Andrade dos Santos, Kelly Mari Pires de Oliveira, Claudia Andrea Lima Cardoso. (2023). Chemical composition and biological activities of the infusion of leaves of Campomanesia guazumifolia (Cambess.) O.Berg: Tea with nutraceutical and medicinal potential. Food and Humanity, 1, p.912. https://doi.org/10.1016/j.foohum.2023.08.007.

2. Thiago Luis Aguayo de Castro, Larissa Paula Souza, Sidnei Eduardo Lima-Junior, Claudia Andrea Lima Cardoso. (2023). Optimization of obtaining extracts with photoprotective and antioxidant potential from Campomanesia adamantium (Cambess.) O. Berg. Sustainable Chemistry and Pharmacy, 31, p.100945. https://doi.org/10.1016/j.scp.2022.100945.

3. Thiago Luis Aguayo de Castro, João Víctor de Andrade dos Santos, Kelly Mari Pires de Oliveira, Claudia Andrea Lima Cardoso. (2023). Peels of the fruits of Campomanesia guazumifolia (cambess) O. berg and Campomanesia sessiliflora (O. Berg) mattos: Residues with cosmetic and food potentials. Sustainable Chemistry and Pharmacy, 35, p.101198. https://doi.org/10.1016/j.scp.2023.101198.

4. Larissa Paula Souza, Thiago Luis Aguayo de Castro, Claudia Andrea Lima Cardoso. (2023). Potenciais antibacteriano e antioxidante de chás das folhas de Casearia sylvestris var. lingua (Cambess.) Eichler (Salicaceae). Revista Fitos, https://doi.org/10.32712/2446-4775.2023.1494.

Dimensions

PlumX

Visitas a la página del resumen del artículo

474

Descargas

Los datos de descargas todavía no están disponibles.