Skip to main content
Log in

Cryogenic electron microscopy for quantum science

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. P. Ball, MRS Bull. 42, 698 (2017).

    Article  Google Scholar 

  2. M. Assig, M. Etzkorn, A. Enders, W. Stiepany, C.R. Ast, K. Kern, Rev. Sci. Instrum. 84, 033903 (2013).

    Article  CAS  Google Scholar 

  3. E.P. Rosenthal, E.F. Andrade, C.J. Arguello, R.M. Fernandes, L.Y. Xing, X.C. Wang, C.Q. Jin, A.J. Millis, A.N. Pasupathy, Nat. Phys. 10, 225 (2014).

    Article  CAS  Google Scholar 

  4. L. Zhao, H. Deng, I. Korzhovska, M. Begliarbekov, Z. Chen, E. Andrade, E. Rosenthal, A. Pasupathy, V. Oganesyan, L. Krusin-Elbaum, Nat. Commun. 6, 8279 (2015).

    Article  Google Scholar 

  5. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Nature 413, 282 (2001).

    Article  CAS  Google Scholar 

  6. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.W. Ng, E.W. Hudson, K.M. Lang, J.C. Davis, Science 340, 1434 (2013).

    Article  CAS  Google Scholar 

  7. Y. Zhang, V.W. Brar, C. Girit, A. Zettl, M.F. Crommie, Nat. Phys. 5, 722 (2009).

    Article  CAS  Google Scholar 

  8. H. Zheng, S.-Y. Xu, G. Bian, C. Guo, G. Chang, D.S. Sanchez, I. Belopolski, C.-C. Lee, S.-M. Huang, X. Zhang, R. Sankar, N. Alidoust, T.-R. Chang, F. Wu, T. Neupert, F. Chou, H.-T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, M.Z. Hasan, ACS Nano 10, 1378 (2016).

    Article  CAS  Google Scholar 

  9. K. Fujita, A.R. Schmidt, E.-A. Kim, M.J. Lawler, D. Hai Lee, J.C. Davis, H. Eisaki, S.-i. Uchida, J. Phys. Soc. Jpn. 81, 011005 (2011).

    Article  CAS  Google Scholar 

  10. H. Watanabe, I. Ishikawa, Jpn. J. Appl. Phys. 6, 83 (1967).

    Article  CAS  Google Scholar 

  11. H.G. Heide, K. Urban, J. Phys. E Sci. Instrum. 5, 803 (1972).

    Article  CAS  Google Scholar 

  12. V.R. Matricardi, W.G. Lehmann, N. Kitamura, J. Silcox, J. Appl. Phys. 38, 1297 (1967).

    Article  CAS  Google Scholar 

  13. J.A. Venables, D.J. Ball, G.J. Thomas, J. Phys. E Sci. Instrum. 1, 121 (1968).

    Article  CAS  Google Scholar 

  14. U. Valdrè, M.J. Goringe, J. Sci. Instrum. 42, 268 (1965).

    Article  Google Scholar 

  15. Y. Fujiyoshi, T. Mizusaki, K. Morikawa, H. Yamagishi, Y. Aoki, H. Kihara, Y. Harada, Ultramicroscopy 38, 241 (1991).

    Article  Google Scholar 

  16. K. Harada, T. Matsuda, J. Bonevich, M. Igarashi, S. Kondo, G. Pozzi, U. Kawabe, A. Tonomura, Nature 360, 51 (1992).

    Article  Google Scholar 

  17. S. Mori, C.H. Chen, S.W. Cheong, Nature 392, 473 (1998).

    Article  CAS  Google Scholar 

  18. J. Rajeswari, P. Huang, G.F. Mancini, Y. Murooka, T. Latychevskaia, D. McGrouther, M. Cantoni, E. Baldini, J.S. White, A. Magrez, T. Giamarchi, H.M. Rønnow, F. Carbone, Proc. Natl. Acad. Sci. U.S.A. 112, 14212 (2015).

    Article  CAS  Google Scholar 

  19. W. Zhao, M. Li, C.-Z. Chang, J. Jiang, L. Wu, C. Liu, J.S. Moodera, Y. Zhu, M.H.W. Chan, Sci. Adv. 4, eaao2682 (2018).

    Article  CAS  Google Scholar 

  20. B.H. Savitzky, I. El Baggari, C.B. Clement, E. Waite, B.H. Goodge, D.J. Baek, J.P. Sheckelton, C. Pasco, H. Nair, N.J. Schreiber, J. Hoffman, A.S. Admasu, J. Kim, S.-W. Cheong, A. Bhattacharya, D.G. Schlom, T.M. McQueen, R. Hovden, L.F. Kourkoutis, Ultramicroscopy 191, 56 (2018).

    Article  CAS  Google Scholar 

  21. I. El Baggari, B.H. Savitzky, A.S. Admasu, J. Kim, S.-W. Cheong, R. Hovden, L.F. Kourkoutis, Proc. Natl. Acad. Sci. U.S.A. 115, 1445 (2018).

    Article  CAS  Google Scholar 

  22. B.H. Goodge, E. Bianco, H.W. Zandbergen, L.F. Kourkoutis, Microsc. Microanal. 25, 930 (2019).

    Article  Google Scholar 

  23. E. Dagotto, Science 309, 257 (2005).

    Article  CAS  Google Scholar 

  24. https://www.nobelprize.org/prizes/physics/1972/press-release.

  25. G.W. Webb, F. Marsiglio, J.E. Hirsch, Physica C 514, 17 (2015).

    Article  CAS  Google Scholar 

  26. G.R. Stewart, Adv. Phys. 66, 75 (2017).

    Article  Google Scholar 

  27. P. Coleman, A.J. Schofield, Nature 433, 226 (2005).

    Article  CAS  Google Scholar 

  28. A. Wieteska, B. Foutty, Z. Guguchia, F. Flicker, B. Mazel, L. Fu, S. Jia, C. Marianetti, J. van Wezel, A. Pasupathy, “Uniaxial Strain Tuning of Superconductivity in 2H- NbSe2,” submitted arXiv:1903.05253v1 (2019).

  29. V.B. Ozdol, C. Gammer, X.G. Jin, P. Ercius, C. Ophus, J. Ciston, A.M. Minor, Appl. Phys. Lett. 106, 253107 (2015).

    Article  CAS  Google Scholar 

  30. C. Ophus, Microsc. Microanal. 25, 563 (2019).

    Article  CAS  Google Scholar 

  31. Y. Han, K. Nguyen, M. Cao, P. Cueva, S. Xie, M.W. Tate, P. Purohit, S.M. Gruner, J. Park, D.A. Muller, Nano Lett. 18, 3746 (2018).

    Article  CAS  Google Scholar 

  32. K. Müller, F.F. Krause, A. Béché, M. Schowalter, V. Galioit, S. Löffler, J. Verbeeck, J. Zweck, P. Schattschneider, A. Rosenauer, Nat. Commun. 5, 5653 (2014).

    Article  CAS  Google Scholar 

  33. P.W. Anderson, Science 235, 1196 (1987).

    Article  CAS  Google Scholar 

  34. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, M. De Graef, Phys. Rev. B 83, 174431 (2011).

    Article  CAS  Google Scholar 

  35. R. Dusad, F.K.K. Kirschner, J.C. Hoke, B.R. Roberts, A. Eyal, F. Flicker, G.M. Luke, S.J. Blundell, J.C.S. Davis, Nature 571, 234 (2019).

    Article  CAS  Google Scholar 

  36. A. Baldi, T.C. Narayan, A.L. Koh, J.A. Dionne, Nat. Mater. 13, 1143 (2014).

    Article  CAS  Google Scholar 

  37. R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak, L.H.G. Tizei, A. Zobelli, Nano Lett. 16, 4317 (2016).

    Article  CAS  Google Scholar 

  38. B.M. Hudak, J. Song, H. Sims, M.C. Troparevsky, T.S. Humble, S.T. Pantelides, P.C. Snijders, A.R. Lupini, ACS Nano 12, 5873 (2018).

    Article  CAS  Google Scholar 

  39. S.V. Kalinin, S.J. Pennycook, MRS Bull. 42, 637 (2017).

    Article  CAS  Google Scholar 

  40. S.P. Ani Nersisyan, N. Alidoust, R. Manenti, R. Renzas, C.-V. Bui, K. Vu, T. Whyland, Y. Mohan, E.A. Sete, S. Stanwyck, A. Bestwick, M. Reagor, “Manufacturing Low Dissipation Superconducting Quantum Processors,” submitted arXiv:1901.08042 (2019).

  41. F. Barkov, A. Romanenko, Y. Trenikhina, A. Grassellino, J. Appl. Phys. 114, 164904 (2013).

    Article  CAS  Google Scholar 

  42. M.J. Lagos, P.E. Batson, Nano Lett. 18, 4556 (2018).

    Article  CAS  Google Scholar 

  43. A.E. Goode, A.E. Porter, M.P. Ryan, D.W. McComb, Nanoscale 7, 1534 (2015).

    Article  CAS  Google Scholar 

  44. I. Jarrige, V. Bisogni, Y. Zhu, W. Leonhardt, J. Dvorak, Synchrotron Radiat. News 31, 7 (2018).

    Article  Google Scholar 

  45. C. Bostedt, J.D. Bozek, P.H. Bucksbaum, R.N. Coffee, J.B. Hastings, Z. Huang, R.W. Lee, S. Schorb, J.N. Corlett, P. Denes, P. Emma, R.W. Falcone, R.W. Schoenlein, G. Doumy, E.P. Kanter, B. Kraessig, S. Southworth, L. Young, L. Fang, M. Hoener, N. Berrah, C. Roedig, L.F. DiMauro, J. Phys. B At. Mol. Opt. Phys. 46, 164003 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The content of this article is based on a workshop held in Berkeley, Calif., in January 2019. We would like to thank all of the workshop participants for contributing to the discussions that led to this article, especially the invited speakers: L. Kourkourtis, A. Pasupathy, K. Müller-Caspary, A. Petford-Long, J. Cha, J. Analytis, R. Ramesh, P. Crozier, C. Regan, A. Salleo, Y. Zhu, J. Idrobo, M. Kociak, and J. Dionne. A.M. and the workshop were supported by the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) under Contract No. DE-AC02–05CH11231. A.M. was also supported by the DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02–05-CH11231 within the High-Coherence Multilayer Superconducting Structures for Large Scale Qubit Integration and Photonic Transduction Program. P.D. acknowledges support by the DOE, Office of Science, Basic Energy Sciences, Scientific User Facilities Division under Contract No. DE-AC02–05-CH11231. D.M. also acknowledges support from the US National Science Foundation (NSF) through the PARADIM materials innovation platform under Cooperative Agreement No. DMR-1539918, and the Cornell Center for Materials Research, an NSF materials research science and engineering center (Grant No. DMR-1719875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Minor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minor, A.M., Denes, P. & Muller, D.A. Cryogenic electron microscopy for quantum science. MRS Bulletin 44, 961–966 (2019). https://doi.org/10.1557/mrs.2019.288

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.288

Navigation