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Abstract—Autonomous landing is an essential function for mi-
cro air vehicles (MAVs) for many scenarios. We pursue an active
perception strategy that enables MAVs with limited onboard
sensing and processing capabilities to concurrently assess feasible
rooftop landing sites with a vision-based perception system
while generating trajectories that balance continued landing site
assessment and the requirement to provide visual monitoring of
an interest point. The contributions of the work are twofold: (1) a
perception system that employs a dense motion stereo approach
that determines the 3D model of the captured scene without the
need of geo-referenced images, scene geometry constraints, or
external navigation aids; and (2) an online trajectory generation
approach that balances the need to concurrently explore available
rooftop vantages of an interest point while ensuring confidence
in the landing site suitability by considering the impact of
landing site uncertainty as assessed by the perception system.
Simulation and experimental evaluation of the performance of the
perception and trajectory generation methodologies are analyzed
independently and jointly in order to establish the efficacy of the
proposed approach.

I. INTRODUCTION

Autonomous landing is an essential function for micro
air vehicles (MAVs) for “perch-and-stare” mission scenarios,
for conserving energy during lulls in mission timelines and
dropping off payloads [18]. In this work, we develop a vision-
based methodology to enable a MAV to autonomously detect
and navigate to a rooftop landing site. We envision a scenario
that deploys a MAV to a region with the objective to au-
tonomously identify a suitable rooftop landing site that offers
favorable vantages of an interest point for surveillance. We
pursue an active perception strategy that enables the vehicle to
concurrently assess feasible landing sites with a vision-based
perception system while generating trajectories that balance
continued landing site assessment and the requirement to
provide visual monitoring of an interest point (see Fig. 1).

Most prior work on autonomous landing of unmanned
air vehicles addresses landing on terrain, instead of finding
elevated perches like rooftops. Due to the severe size, weight,
and power (SWaP) constraints of MAVs, applicable methods
for MAVs must use much lighter, lower performance sensing
and computing resources than available on larger scale sys-
tems [21]. Approaches amenable to these SWaP constraints
frequently employ monocular [2, 8, 15, 24] and binocular
stereo [13, 25] camera systems to map and analyze terrain.
Most approaches perform some form of 3D terrain recon-
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Fig. 1: Methodology overview. (a) A quadrotor micro aerial
vehicle approaches a rooftop while modeling landing confi-
dence via the vision-based perception system toward monitor-
ing of an interest point (red box). (b) Landing site confidence
is modeled as an evolving Gaussian process trained on new
observations from the perception system. (c) Online trajectory
generation balances landing site feasiblity, interest point ob-
servability, and the impact of future measurements through the
maximization of an information-theoretic objective.

struction, then assess planarity and slope of appropriately-sized
terrain patches. Binocular stereo vision approaches are simpler
algorithmically, due to the fixed inter-camera geometry, but
are limited by the inter-ocular baseline and heavier. Three
monocular approaches are particularly relevant here. The first
tracks point features to estimate homographies from image
pairs for predominantly planar terrain, then analyzes correla-
tion coefficients for dense matches to segment in-plane and
out-of-plane pixels [2]. The second uses a recursive filter at
each pixel, image matching via gradient descent with intensity
derivatives, and a plane plus parallax formulation of structure
from motion to estimate dense elevation maps from image
sequences [24]. Both of these address finding landing sites
on the ground. The third uses multi-planar homography with
tracked features to segment a planar ground-level surface from
an elevated, planar landing site [3].

Our proposed perception system uses a monocular camera
and employs a dense motion stereo approach that estimates
a 3D model of the scene without requiring geo-referenced
images, dominant planes, or external navigation aids like GPS.
We present a frame list approach that chooses a variable
baseline to enable arbitrary selection of depth accuracy of
the 3D model as long as the motion between an image



pair can be found correctly. This approach is applicable to
complex, non-planar scenes and is generalizable to multi-
frame reconstruction. All processing is done onboard in real
time.

The proposed online trajectory generation approach bal-
ances the need to concurrently explore available rooftop
vantages of an interest point while ensuring confidence in
the landing site suitability. When the position of the landing
site is initially uncertain or unknown, trajectory generation
approaches may seek to minimize the expected site uncer-
tainty through future measurements by reducing the expected
covariance of the target estimate propagated through a sensor-
based prediction model [6, 10, 17]. However, such forward
propagation is not viable given the proposed perception sys-
tem, and so we pursue an information-based planning approach
that seeks to generate optimal trajectories with respect to a
spatially-varying field representing landing site confidence that
is updated online via the perception system [16]. Similar to
prior work, we choose a Gaussian process representation to
guide trajectory planning toward minimizing the variance in
the field estimate [11, 14, 26]. However, our approach differs
in that we consider the impact of image space observations
on the field estimate, rather than treating the entire image as
a single point-observation of the field.

The organization of the presentation follows. We discuss
the vision-based landing site evaluation methodology and the
probabilistic representation of the spatially-varying conditional
landing site confidence in Sect. II. The online information-
based trajectory generation approach based on the observations
from the perception system is detailed in Sect. III. Simulation
and experimental evaluation of the performance of the per-
ception and trajectory generation methodologies are analyzed
independently and jointly in order to evaluate the efficacy of
the proposed approach in Sects. IV-V, respectively.

II. VISION-BASED LANDING SITE DETECTION

The landing site detection algorithm consists of two parts:
the 3D reconstruction of the visible scene below the MAV
using dense motion stereo, and the analysis of the scene in
order to search for potential landing candidates. The results of
the algorithm are a binary landing map in image space with
underlying 3D coordinates in the world frame and a confidence
measure for the landing site quality. We transform this binary
map in image space to a spatially-varying conditional proba-
bility distribution via a Gaussian process toward enabling the
information-based trajectory generation techniques in Sect. III.

A. 3D Reconstruction of the Visible Scene

Conventional stereo vision uses two rigidly mounted cam-
eras, separated by the baseline, to capture a scene from
different points of view. To account for lens distortion effects
and to determine the stereo geometry that is needed for metric
3D reconstruction of an observed scene, camera intrinsics
and extrinsics are usually determined by an offline calibration
procedure and are assumed to be constant during operation.

Dense motion stereo is based on the same principle, with
the difference that the two views of the captured scene are
generated by one moving camera instead of a rigid stereo bar.
In this case the extrinsic parameters (rotation and translation
between the two camera positions) have to be determined for
each image pair individually. The intrinsic parameters do not
change and can therefore be calibrated offline and in advance.
We use a CAHVORE camera model [5] to model lens effects
and to generate linearized camera models that describe the
perspective projection.

The fact that one moving camera is used instead of two
rigidly mounted cameras leads to the following challenges.
(1) Image based motion estimation between two images at
different camera positions can only be calculated up to scale.
This scale factor must be calculated from additional informa-
tion (e.g., vehicle pose) in order to convert camera coordinates
to metric world coordinates. (2) Rotation and translation
between the camera images must be determined precisely to
enable proper stereo matching with subpixel accuracy. (3) The
distance between the two viewpoints can greatly impact the
accuracy of the calculation of depth.

Figure 2 provides an overview of the image processing
pipeline of our dense motion stereo framework. We select
image pairs from an image frame list with a fixed length
time-window and extract feature points (STAR features and
MSURF descriptor) in each image, tracking them in subse-
quent images. Correspondences are chained over time, so that
feature track lists record how long each feature was tracked
and where it appeared in each image. To select image pairs,
we search a reference image for the most recent image using
two criteria. First, given the camera pose in the world frame
(estimated from inertial measurements using an extended
Kalman filter), we look for images that are an appropriate
distance apart from our current image. The minimum baseline
is determined using the minimum required depth accuracy at
ground level. Once images which fulfill this criterion have
been found, we secondly choose the image which exceeds
a minimum number of successive feature matches with the
current image, based on the track lists.

Since camera motion estimates from the pose estimation
EKF are not accurate enough for dense motion stereo, we
estimate the rotation and translation between the images
via a multi-planar homography alignment approach [4]. The
translation vector is then scaled by the real-world baseline.
Since the quality of motion estimation depends on the quality
of feature detection and matching, and thus is strongly scene
dependent, we calculate the average 3D reprojection error of
the feature pairs to discard poor motion estimates. Finally, we
use a SADS stereo matching algorithm to calculate a disparity
map, from which we generate a 3D point cloud to model the
captured scene beneath the MAV [7].

B. Landing Site Detection

We define a suitable landing site as: (1) approximately
planar and level; (2) sufficiently large to permit MAV ingress,
landing, and egress; and (3) free of obstacles to ensure vehicle
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Fig. 2: Landing detection overview. A new input image is warped to remove distortion and stored together with detected
features and camera pose in a frame list. An image pair with an appropriate distance (7', defined by the minimum baseline b)
is selected. Features are matched between selected frames, in order to calculate a frame to frame transform for rectification.
Stereo disparity based 3D reconstruction serves as an input to the landing site detection algorithm. The calculated landing
map labels all pixels with a valid stereo disparity as: green (below roof top), red (on roof top but unsafe), orange (insufficient
space), and blue (safe landing area). The location with the highest confidence is marked by x (blue and red indicate high and

low confidence, respectively, in the confidence map)

safety. To fulfill these requirements, we propose a probabilistic
model based on the range data that captures the statistical
variability of the range data.

We first reject candidates that are close to the ground
level via a depth resolution dependent threshold. The resulting
disparity map is used to determine planar regions in the camera
image, ignoring pixels with invalid range data. We observe
that the variance of the disparity map along the gravity vector
after projection into world frame corresponds to the planarity
of the landing surface. The smaller the standard deviation in
the disparity map, the more planar the corresponding area.
For each pixel, we compute the second moment over a local
kernel along the world frame vertical axis, where the kernel
dimensions are chosen to capture the dimensions defined by
the vehicle size and ingress, egress requirements. The local
kernel depends on the disparity value d and the MAV’s altitude
h. We define the MAV bounding radius r, the focal length f,
and the target depth accuracy z,.., where target depth accuracy
is the first derivative of h with respect to the disparity. The
minimum landing space in the image domain is the vehicle’s
size divided by the lateral resolution of the camera. The local
kernel for each landing candidate is therefore
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n(d, h) = d. (1)

The standard deviation is further used to generate a normalized
confidence value for each landing candidate. A color-coded
confidence map is shown in Fig. 2.

C. Spatial Representation of the Landing Site Confidence as
a Gaussian Process

The perception system detailed in Sect. II provides an
estimate of landing confidence, [ € [0,1], for each point in
image space. We spatially smooth the observations across
frames using a Gaussian process (GP) whose inputs are
positions, » = (z,y, z). The GP can be viewed as a linear
smoother that provides the probability of being able to land
at a location, P(l|r), using a standard Gaussian kernel to
determine smoothing weights [20]. Specifically, given a set
of training locations R and the corresponding training data
{(r,1)|r € Ry} for the GP, the mean value at a test point 7,
is a weighted sum of all the training data

Rl
lt = Z wllz
=1

where the weight function

R
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is defined by the kernel function x centered about r; with
variance o2 [20]. We assume the hyperparameters have been
optimized prior to the approach for landing using prior sensor
observations. This could include observations collected from
the initial exploration phase of the landing trajectory (see
Sect. IV), which would also capture current environmental
properties.

To reduce the computational load, we downsample the input
data in the image space, as illustrated in Fig. la prior to



introducing the values as training data for the GP. Additionally,
sparse [23] and incremental [19] GP techniques may be
employed to further reduce the computational burden.

Potential landing sites are identified by thresholding the GP
mean. We discretize the GP and label a grid cell as a landing
site if its mean confidence value is above a threshold. The
resulting set of candidate landing sites are then sorted based
on the mean confidence value, and a landing site is selected
from this list that minimizes the distance to the surveilled
interest point (Fig. 1b).

III. INFORMATION-BASED TRAJECTORY DESIGN

After selecting a landing site, the MAV must plan a smooth
trajectory to land. Following Shen et al. [22], we choose to
minimize the angular velocity along the trajectory in order
to reduce image distortion due to motion blur. Therefore, we
compute the optimal polynomial trajectory from the current
state to the selected landing site with a desired final heading
Y¢. We define a p"-order spline for the flat outputs (for a
quadrotor) s € {z,y,z,v¢} [12] as

p
t)=> cot’
=0

The spline coefficients c;, are determined via a multi-objective
optimization. For the quadrotor platform, minimizing the an-
gular velocity corresponds to minimizing the jerk with an
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We introduce a second objective function to maximize
information gain in order to ensure continued observation of
the current landing site toward a reduction in the landing site
confidence uncertainty. The information gain along a trajectory
reflects the effect of expected future measurements on the
belief distribution. Since the distribution here is given by a
GP, the trajectory should produce additional training data that
will reduce uncertainty on the confidence value at the current
landing site.

We define a generative sensor model in order to predict
the expected observations given the camera extrinsic and
intrinsic properties. We can directly compute weights for the
set of predicted measurement locations » € Rp independent
of the confidence values at those locations as the weight
function in (2) is only a function of the GP inputs r and
not the outputs [. These weights quantify the contribution
of the predicted measurements to the GP belief at r;. After
augmenting the training data with the predicted measurement
locations, the new weights are given by
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The total contribution of the predicted measurements relative
to the existing training data is

Given that the variance of a test point in a GP is determined
by the total contribution of training points to the value at that
test point, adding training points with a large relative contri-
bution W will reduce the variance. Therefore, to maximize
the information gain about a location r; along a trajectory, we
maximize the following objective function

Z Wi )

where W}, is computed at K points uniformly distributed along
the trajectory. As R is augmented with R p, at each step k,
this information metric also captures the diminishing returns
from new data near the test point.

We can also use a variant of this information objective to
promote exploration of potential landing sites that minimize
the distance to an interest point or surveillance target, ryrger.
The exploration objective is defined as

J2 = Jinfo(Tt, 0r)

J3 = Jinfo (rtargeh Uexplore) (5)

where we select Oegplore > 0, to reward measurements
collected in a larger neighborhood of 7. This also leads to
diminishing returns earlier, automatically decreasing the value
of the exploration objective over time and producing a natural
transition from favoring exploration (J3) to exploitation (J2).

The optimization to determine the coefficients c;, is formu-
lated as a minimization that combines the minimum jerk and
maximum information objectives ((3) and (4), respectively)
with weights a;, as, a3 > 0

argmin  o1J; — asdy — asJs

ls.t. s(to) =
s(ty) > s;
s(ty) < s;{ ©)
5(to) = $o
$(ty) =0

Vs € {x, y, z, ¢}

where sg and $g are given by the vehicle’s initial state. The
bounds on the terminal state, s; and s, are determined by
the discretization used to identify potential landing sites from
the GP in Sect. II-C. The final velocity constraint enforces the
requirement to land at the selected site. The trajectory is re-
computed online as the perception system provides additional
observations and the landing site confidence evolves.

IV. SIMULATION RESULTS

We now focus on evaluating the impact of the multiple
objectives proposed in Sect. III on the autonomous landing
performance. We consider the “perch-and-stare” scenario in
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Fig. 3: A simulated autonomous landing scenario.

which the vehicle must land on a cluttered rooftop in proximity
to a monitoring target, and the perception system is emulated
via a synthesized rooftop surface with associated landing
confidence values (Fig. 3a). A confidence measure similar
to that proposed in Sect. II-B is generated (Fig. 3b) and
introduced into a GP as training data (Fig. 3c), as described
in Sect. II-C. Figure 3d shows the resulting GP superimposed
on the true rooftop surface with thresholded candidate landing
sites shown in Fig. 3e.

Toward comparing the performance of the objective func-
tions, define J; and Js as objective functions that seek to
minimize the distance from the center of the camera FOV
to the current landing site and interest point, respectively.
Table I shows a comparison of landing trajectories generated
by six objective functions constructed from J; through Js.
The vehicle’s initial state, re-plan rate, trajectory duration,
vision update rate, and target location are held constant across
all objectives. The trajectories are evaluated based on their
distance to the target after landing, the length of the resulting
trajectory, and the cumulative jerk along that trajectory.

The dark gray cells in the table are ignored due to poor land-
ing site selection, which stems from insufficient exploration.
The other three objectives explore more due to the lack of
the information objective (4), resulting in longer trajectories.
These results suggest that the objective in (6) provides a
reasonable balance between exploring the environment and
exploiting information gain to focus on the landing site.

(b) Exploration yields an im-

(a) Initial exploration trajectory proved landing site

(c) Transition to exploitation (d) Descent to landing site

Fig. 4: Vinette depicting the exploration, exploitation phases
of the autonomous landing maneuver.
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Fig. 5: Relative contribution of the two information terms to

the trajectory cost at each planning iteration and the transition

from exploration (J3) to exploitation (.Js).

Figure 4 shows the evolution of the trajectory over several
planning iterations.

Figure 5 shows the relative contribution of the exploration
and exploitation (information) objectives to the cost of the
trajectory computed at each planning iteration. Trajectories ini-
tially favor exploration but gradually transition to exploitation
due to diminishing returns from exploration and the increasing
value of observations approaching the landing site.

V. EXPERIMENTAL EVALUATION

We now consider the experimental evaluation of the pro-
posed perception system and trajectory generation approach in
a rooftop landing environment. For the latter, we synthesize
the trajectories offline using data from the outdoor perception
system evaluation and are presently in the process of inte-
grating the two methodologies toward enabling experimental
evaluation of the complete active perception system.

TABLE I: Comparison of objective functions. Shaded cells
indicate the minimum in each row.

Objective: J1 Ji4a | J1i—2 | Jig45 | Ji—3 | J1—2-3
Site to Target (m) | 75.57 | 28.56 | 78.33 | 29.15 | 28.56 | 28.56
Path Length (m) |24.65 | 129.42 | 23.40 |259.78 | 122.74 | 81.58
Total Jerk (m/s3) | 24.45 | 142.98 [ 27.35 [ 175.66 | 96.17 | 68.62
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Fig. 6: Indoor experiment: (a) box as surrogate roof-top; (b)
hand labeled landing map, outer box shape is the edge of the
box surface, inner box safety zone is the box surface without
the 13 cm border region.

A. Implementation Details

1) System Configuration: For evaluation of the landing
detection algorithm, we implemented the pose estimation
framework and the landing detection software onboard an
Asctec Hummingbird that is equipped with an Odroid U2
processing board (Exynos4412, 1.7GHz). The EKF framework
is distributed according to [27] between the U2 flight computer
where we run visual odometry and calculate filter updates
at 30Hz, whereas the propagation of the quadrotor position,
velocity and attitude is executed at 1kHz on the platform’s
embedded ARM7 processor. The U2 flight computer also hosts
the landing detection software which is executed onboard at a
rate of 1Hz. The platform is equipped with a gray-scale Matrix
Vision mvBlueFOX camera (Aptina MT9V034 sensor) with
a resolution of 752x480, global shutter, and 100 ° horizontal
FOV.

2) Pose Estimation: An accurate pose estimate of the
vehicle is required to enable the perception system evaluation.
To estimate the pose in a gravity aligned navigation frame
we use the approach described in [28]. It uses a modified
version of PTAM [9], which is robust in fast motion and
self-similar environments [1]. Since it is a key-frame based
visual odometry approach, the computed camera pose does
not drift while the quadrotor is hovering. We use the arbitrarily
scaled 6 DoF output of this module in an EKF framework and
fuse it with inertial readings as described in [28]. This not
only scales the visual pose to metric units but also aligns the
navigation frame with gravity. The system also continuously
self-calibrates the camera-IMU extrinsics and IMU biases.

B. Perception System Performance Evaluation

1) Indoor evaluation: The indoor experiments were de-
signed to evaluate proper system performance and generate
quantitative error metrics from hand labeled ground truth data.
We fly our quadrotor system at three different altitudes over a
box (57 x 57 x 27 cm?) (Fig. 6) to simulate a rooftop landing
scenario. To increase the number of calculated frames, we pre-
recorded input images and vehicle poses during overflight and
run the landing detection software off-line at frame rate. In
all experiments, the vehicle radius was set to 13cm to allow

for a sufficiently sized valid landing area in the middle of the
box, and the arbitrary ground level cut off threshold was set
to 20 cm. For ground truth, the true landing area in the middle
of the box surface was marked by corner marks that were
located at 13 cm distance from the box edges, and these were
manually identified in the input images (see Fig. 6b).

The first three rows of Table II give an overview of the
evaluation results. Altitude, baseline, and reprojection error
during image alignment correspond to the average value for
each experiment. For the evaluation, we only considered
frames where the box surface was completely visible in the
disparity image to avoid border effects and where valid stereo
results could be calculated (i.e., with sufficient baseline and
more than 40 feature matches for image alignment; denoted
“frames visible”). Within these frames, we defined a success-
ful detection (“frames successful””) as frames where at least
one valid landing location was detected on the box and no
landing location was detected falsely on the ground. For these
successful frames, we also calculated false positive (FP) rates
(pixels that were classified as valid landing areas but were
located in the border area), false negative (FN) rates (pixels
not classified as landing areas that were located in the correct
center area of the box). Note, that we only consider pixels
with valid disparity values in this metric.

Our approach is able to robustly detect the landing zone
with a success rate of more than 90% in all experiments, with
a false positive rate bellow 0.05%. The false positive (FP) and
false negative (FN) rate is largely defined by the quality of the
disparity input. Border fattening effects usually increase the FP
rate, whereas missing disparity pixels on top of the target lead
to increased FN rates, since we treat missing data as unsafe.
To mitigate these two effects we introduced two thresholds to
maximize safety: (1) at disparity edges, we disable all pixels
that are located within half a correlation window size to the
edge, and (2) we use a percentage threshold which defines the
minimum number of pixels with disparity around a landing
site (98% in our experiments).

To verify the accuracy of our 3D reconstruction, we plotted
the height of the landing point with the highest confidence for
one of the sequences (Fig. 7). The error follows the expected
depth accuracy of 3 cm within the true box height of 27.5 cm.

TABLE II: Evaluation of landing site detection. Row 1-3:
Indoor experiment at three different altitudes (r = 13cm,
depth accuracy at ground level=3 cm); Row 4-5: outdoor
experiment (depth accuracy at ground level=20 cm).

altitude baseline repro. err. No. of frames FP FN
[m] [m] [pixel] visible successful [%] [%]
1.47 039 0.21 116 106  91.4% | 0.028 39.34
219  0.86 0.20 63 62  98.4% | 0.046 43.57
334 2.00 0.18 67 63  94.0% | 0.0026 53.14
6.51 1.16 0.28 337 325 96.3%

10.15  2.28 0.22 480 433 90.2%
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Fig. 7: Indoor experiment: (a) Box height calculation for valid
landing point with highest confidence. (b) Reprojection error
of feature matches and estimated baseline (depth accuracy
3 cm).

(d)

Fig. 8: Outdoor experiment environment and data set images.
(a) aerial view of the flight area and target building; (b) the flat
area on the roof is the landing target; (c) raw input image with
good texture on roof; (d) image with saturation area which
leads to missing stereo data.

The low average reprojection error confirms valid motion
estimation results.

2) Outdoor evaluation: For the outdoor experiments, we
conducted overflights over a one story building (Fig. 8) and
recorded image sequences from the downward looking camera
together with pose data for off-line analysis.

A quantitative evaluation for two different overflights is
given in Table II rows 4-5. The average altitude of the first
flight was 6.5 m, which lead to an average required baseline
of 1.16 m. The second overflight was at a higher altitude of
approx. 10.15 m requiring a slightly higher minimum baseline
of 2.28 m on average. From all frames where at least a part
of the safe landing zone on top of the building was visible
in the disparity images, we could successfully identify a valid
landing target in over 90% of the frames for both experiments.

C. Simulated Trajectory Generation via Outdoor Datasets

We also evaluated the GP-based landing site selection and
trajectory generation components using the outdoor flight
data. Figure 9a shows an approximate reconstruction of the
environment from the point cloud data with the grayscale
image data overlaid. The raised, light-colored section in the
center is the building on which we wish to land (see also
Fig. 8).

The confidence map from each image frame is binned and
introduced as training data to the GP, as in the simulations. We
compute the GP hyperparameters on the data from the initial
frames, updating the covariance and kernel functions.

The distribution given by the GP after exploring the envi-
ronment is shown in Fig. 9c and accurately identifies much of
the rooftop as landing sites with high confidence. Figure 9d
shows the discrete landing site candidates, which allows us to
select the candidate closest to the point of interest and compute
the remainder of the trajectory to land at the site.

VI. CONCLUSION AND FUTURE WORK

We have addressed a MAV autonomous landing scenario
involving landing on rooftops for surveillance of nearby areas.
Due to the severe SWaP constraints of MAVs, our approach
uses a single, down-looking camera and an IMU for all
state estimation and landing site detection. GPS-denied pose
estimation algorithms are drawn from previous work. Landing
site detection uses a dense motion stereo-based approach with
a frame list that chooses variable baselines to match range
resolution to the environment and flight conditions. Simple
planarity analysis of aircraft-sized regions of the disparity
maps labels pixels as candidate landing sites with correspond-
ing confidence measures. These are filtered over time in a
Gaussian process-based representation, which in turn is used
by an information-based planning approach. The planner seeks
to generate optimal trajectories using an objective function
that trades off exploration of the rooftop and minimizing
uncertainty on the selected landing site. Simulations have
validated the planner and experiments with indoor and outdoor
data sets have validated the landing site detection technique.

Currently, all components are implemented onboard testbed
quadrotor aircraft, but full integration of perception with plan-
ning and end-to-end, outdoor testing remains to be done. The
primary challenge with this integration stems from allocating
sufficient resources to each component to run in real-time.
However, since the cost functions query the GP in a relatively
small area (i.e., a section of a rooftop) at a user-defined
resolution, we can easily adjust these parameters to balance
the computational requirements of the planner against those of
the perception system. Future work will extend the system to
address more sophisticated landing site selection criteria and
to land on a wider class of elevated structures for perch-and-
stare missions.



(a) Environment model constructed from point cloud data
(light patch is rooftop).

(b) Image data frames data (viable landing sites in blue).

e

(c) GP after 90 frames overlaid on environment model

(d) Viable sites identified, trajectory to best landing site
computed (blue) from end of traversed trajectory (red)

Fig. 9: Illustration of pipeline applied to outdoor flight data.
Insets in 3D figures show corresponding bird’s-eye view.
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