Czech J. Anim. Sci., 2017, 62(1):22-31 | DOI: 10.17221/1/2016-CJAS

Beta-carotene supplementation positively affects selected blood metabolites across time around the onset of puberty in goatsOriginal Paper

Cesar A. Meza-Herrera*,1, Pedro Pacheco-Alvarez1, Ornella E. Castro2, Ulises Macias-Cruz3, Leonel Avendaño-Reyes3, Miguel Mellado4, Francisco G. Veliz-Deras4, Viridiana Contreras-Villarreal4, Jose Abad-Zavaleta5, Rafael Rodriguez-Martinez4, Gerardo Arellano-Rodriguez4
1 Regional University Unit of Arid Lands, Chapingo Autonomous University, Bermejillo, Mexico
2 Faculty of Agricultural Sciences, National University of Catamarca, San Fernando de Catamarca, Argentina
3 Institute of Agricultural Sciences, Baja California Autonomous University, Mexicali, Mexico
4 Department of Veterinary Sciences and Department of Animal Nutrition, Antonio Narro Agricultural Autonomous University, Torreon, Mexico
5 Institute of Biotechnology, University of Papaloapan, Tuxtepec, Mexico

The possible effect of beta-carotene supplementation upon peripubertal changes in serum concentrations across time for total protein (TP), urea (UR), cholesterol (CHOL), and glucose (GLU) around puberty onset was evaluated. The experiment was carried out from June to November and prepubertal goats (n = 17, 3 months old, 7/8 Saanen-Alpine, 1/8 Criollo) were randomly assigned to: (1) beta-carotene group (BC) (n = 9; 17.3 ± 1.0 kg live weight (LW), 3.3 ± 0.12 body condition score (BCS), oral supplementation with 50 mg beta-carotene per day per goat) and (2) control group (CC) (n = 8; 16.1 ± 1.0 kg LW, 3.1 ± 0.12 BCS). Serum blood samples were collected along the experiment to quantify progesterone concentrations (P4) through radioimmunoassay, while TP, UR, CHOL, and GLU through spectrophotometric analyses. No differences (P > 0.05) occurred between treatments regarding LW and BCS, and TP (67.6 ± 2.4 g/l), UR (3.8 ± 0.17 mmol/l), GLU (5.06 ± 0.09 mmol/l), and CHOL (1.62 ± 0.07 mmol/l) concentrations. However, while a treatment × time interaction occurred between treatments for TP, GLU, CHOL (P < 0.05) favouring the BC group, an increased serum UR levels occurred in the CC group. Nonetheless, such general serum metabolite profile was related neither to the age (215.7 vs 226.5 ± 6.6 days; P > 0.5) nor to the percentage (44.4 vs 25.0 ± 17.0%; P > 0.05) of goats reaching puberty in the BC and CC groups, respectively. Results should help speed-up goat productivity while may also engender key management applications to different animal industries.

Keywords: reproduction, nutritional supplementation, focus feeding, glucose, cholesterol, pubertal activation

Published: January 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Meza-Herrera CA, Pacheco-Alvarez P, Castro OE, Macias-Cruz U, Avendaño-Reyes L, Mellado M, et al.. Beta-carotene supplementation positively affects selected blood metabolites across time around the onset of puberty in goats. Czech J. Anim. Sci.. 2017;62(1):22-31. doi: 10.17221/1/2016-CJAS.
Download citation

References

  1. AOAC (1990): Official Methods of Analysis of AOAC International. 15 th Ed. Association of Official Analytical Chemists, Arlington, USA.
  2. Arasteh A., Farahi S., Habibi-Rezaei M., Moosavi-Movahedi A.A. (2014): Glycated albumin: an overview of the in vitro models of an in vitro potential disease marker. Journal of Diabetes and Metabolic Diseases, 13, 49. Go to original source... Go to PubMed...
  3. Arellano-Rodriguez G., Meza-Herrera C.A., RodriguezMartinez R., Velazquez-Mendez G., Mellado M., Salinas H., Perez-Razo M.A., Sanchez F. (2007): Short-term betacarotene supplementation positively affects ovarian follicular development and ovulation rate in goats. Journal of Applied Animal Research, 32, 177-180. Go to original source...
  4. Arellano-Rodriguez G., Meza-Herrera C.A., RodriguezMartinez R., Dionisio-Tapia R., Hallford D.M., Mellado M., Gonzalez-Bulnes A. (2009): Short-term intake of β-carotene-supplemented diets enhances ovarian function and progesterone synthesis in goats. Journal of Animal Physiology and Animal Nutrition, 93, 710-715. Go to original source... Go to PubMed...
  5. Aumont G., Poisot F., Saminadin G., Borel H., Alexandre G. (1994): Body condition score and adipose cell size determination for in vivo assessment of body composition and post-mortem predictors of carcass components in Creole goats. Small Ruminant Research, 15, 77-85. Go to original source...
  6. Boldt J. (2010): Use of albumin: an update. Anesthesia, 104, 276-284. Go to original source... Go to PubMed...
  7. Dupont J., Scaramuzzi R.J., Reverchon M. (2014): The effect of nutrition and metabolic status on the development of follicles, oocytes and embryos in ruminants. Animal, 8, 1031-1044. Go to original source... Go to PubMed...
  8. Eroglu A., Harrison E. (2013): Carotenoid metabolism in mammals, including man: formation, occurrence and function of apocarotenoids. Journal of Lipid Research, 54, 1719-1730. Go to original source... Go to PubMed...
  9. FASS (2010): Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. Federation of Animal Science Societies, Savoy, USA. Go to PubMed...
  10. Folman Y., Ascarelli I., Kraus D., Barash H. (1987): Adverse effect of beta-carotene in diet on fertility of dairy cows. Journal of Dairy Science, 70, 357-366. Go to original source... Go to PubMed...
  11. Harrison E.H., de la Sena C., Eroglu A., Fleshman M.K. (2012): The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling. American Journal of Clinical Nutrition, 96, 1189S-1192S. Go to original source... Go to PubMed...
  12. Kaneko J.J., Harvery W., Bruss M.L. (2008): Clinical biochemistry of domestic animals. Elsevier Academic Press.
  13. Kawashima C., Kida K., Schweigert F.J., Miyamoto A. (2009): Relationship between plasma betacarotene concentrations during the peripartum period and ovulation in the first follicular wave postpartum in dairy cows. Animal Reproduction Science, 111, 105-111. Go to original source... Go to PubMed...
  14. Kawashima C., Nagashima S., Sawada K., Schweigert F.J., Miyamoto A., Kida K. (2010): Effect of β-carotene supply during close-up dry period on the onset of first postpartum luteal activity in dairy cows. Reproduction in Domestic Animals, 45, 282-287. Go to original source... Go to PubMed...
  15. Kawashima C., Matusi M., Shimizu T., Kida K., Miyamoto A. (2012): Nutritional factors that regulate ovulation of the dominant follicle during the first follicular wave postpartum in high-producing dairy cows. Journal of Reproduction and Development, 58, 10-16. Go to original source... Go to PubMed...
  16. Koga M., Kasayama S. (2010): Clinical impact of glycated albumin as another glycemic control marker. Endocrinology Journal, 57, 751-762. Go to original source... Go to PubMed...
  17. Krammer G., Aurich J. (2010): Effect of intramuscularly administered betacarotene on reproductive performance in sows. Berliner und Munchener Tierarztliche Wochenschrift Journal, 123, 496-499. Go to PubMed...
  18. Littell C.R., Henry P.R., Ammerman C.B. (1998): Statistical analysis of repeated measures data using SAS procedures. Journal of Animal Science, 76, 1216-1231. Go to original source... Go to PubMed...
  19. Lobaccaro J.M., Gallot D., Lumbroso S., Mouzat K. (2013): Liver X Receptors and female reproduction: when cholesterol meets fertility. Journal of Endocrinological Investigation, 36, 55-60. Go to PubMed...
  20. Meza-Herrera C.A., Tena-Sempere M. (2012): Interface between nutrition and reproduction: the very basis of production. In: Astiz S., Gonzalez-Bulnes A. (eds): Animal Reproduction in Livestock. Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford, UK.
  21. Meza-Herrera C.A., Veliz-Deras F.G., Wurzinger M., LopezAriza B., Arellano-Rodriguez G., Rodriguez-Martinez R. (2010): The kiss-1, kisspeptin, gpr-54 complex: a critical modulator of GnRH neurons during pubertal activation. Journal of Applied Biomedicine, 8, 1-9. Go to original source...
  22. Meza-Herrera C.A., Hernandez-Valenzuela L.C., Gonzalez-Bulnes A., Tena-Sempere M., Abad-Zavaleta J., Salinas-Gonzalez H., Mellado M., Veliz-Deras F. (2011): Long-term betacarotene-supplementation enhances serum insulin concentrations without effect on the onset of puberty in the female goat. Reproductive Biology, 11, 236-249. Go to original source... Go to PubMed...
  23. Meza-Herrera C.A., Vargas-Beltran F., Tena-Sempere M., Gonzalez-Bulnes A., Macias-Cruz U., Veliz-Deras F.G. (2013a): Short-term betacarotene supplementation positively affects ovarian activity and serum insulin concentrations in a goat model. Journal of Endocrinological Investigation, 36, 185-189. Go to PubMed...
  24. Meza-Herrera C.A., Vargas-Beltran F., Vergara-Hernandez H.P., Macias-Cruz U., Avendano-Reyes L., RodriguezMartinez R., Arellano-Rodriguez G., Veliz-Deras F.G. (2013b): Betacarotene supplementation increases ovulation rate without an increment in LH secretion in cyclic goats. Reproductive Biology, 13, 51-57. Go to original source... Go to PubMed...
  25. Meza-Herrera C.A., Reyes-Avila J.M., Tena-Sempere M., Veliz-Deras F.G., Macias-Cruz U., Rodriguez-Martinez R., Arellano-Rodriguez G. (2014): Long-term betacarotene supplementation positively affects serum triiodothyronine concentrations around puberty onset in female goats. Small Ruminant Research, 116, 176-182. Go to original source...
  26. NAM (2002): Guide for the Care and Use of Laboratory Animals. National Academy of Medicine, Mexico and the Association for Assessment and Accreditation of Laboratory Animal Care International, Mexico, DF, Mexico.
  27. NRC (2007): Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. The National Academies Press, Washington, DC, USA.
  28. Rondeau P., Bourdon E. (2011): The glycation of albumin: structural and functional impacts. Biochimie, 93, 645-658. Go to original source... Go to PubMed...
  29. Rosales-Nieto C.A., Ferguson M.B., Macleay C.A., Briegel J.R., Martin G.B., Thompson A.N. (2013): Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs. Animal, 7, 990-997. Go to original source... Go to PubMed...
  30. Schneider F.A., Hallford D.M. (1996): Use of a rapid progesterone radioimmunoassay to predict pregnancy and fetal numbers in sheep. Sheep and Goat Research Journal, 12, 33-38.
  31. Urelp Z., Rozman D. (2013): The interplay between circadian system, cholesterol synthesis and steroidogenesis affects various aspects of female reproduction. Frontiers in Endocrinology, 111, 1-10. Go to original source... Go to PubMed...
  32. von Lintig J., Hessel S., Isken A., Kiefer C., Lampert J.M., Voolstra O., Vogt K. (2005): Towards a better understanding of carotenoid metabolism in animals. Biochimica et Biophysica Acta, 1740, 122-131. Go to original source... Go to PubMed...
  33. Ye G., Zhu Y., Liu J., Chen X., Huang K. (2014): Preparation of glycerol-enriched yeast culture and its effect on blood metabolites and ruminal fermentation in goats. PLoS ONE, 9, e94410. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.