Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Radioprotective Potential of Nutraceuticals and their Underlying Mechanism of Action

Author(s): Shabnoor Iqbal, Muhammad Ajmal Shah*, Azhar Rasul, Malik Saadullah, Sobia Tabassum, Shujat Ali, Muhammad Zafar, Haji Muhammad, Md Sahab Uddin, Gaber El-Saber Batiha and Celia Vargas-De-La-Cruz

Volume 22, Issue 1, 2022

Published on: 23 February, 2021

Page: [40 - 52] Pages: 13

DOI: 10.2174/1871520621666210223101246

Price: $65

Abstract

Abstract: Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations have been conducted only on few synthetic radioprotectors, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies involve modulation of signaling transduction pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory gene expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and radioprotective molecular mechanism of nutraceuticals, DNA repair pathway, anti-inflammation, immunomodulatory effects and regeneration of hematopoietic cells.

Keywords: Radioprotector, nutraceuticals, antioxidants, anticancer, natural products, chemoprevention.

Graphical Abstract
[1]
Nair, C.K.; Parida, D.K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. (Tokyo), 2001, 42(1), 21-37.
[http://dx.doi.org/10.1269/jrr.42.21] [PMID: 11393887]
[2]
Schulz-Ertner, D.; Jäkel, O.; Schlegel, W. Radiation therapy with charged particles. Semin. Radiat. Oncol., 2006, 16(4), 249-259.
[http://dx.doi.org/10.1016/j.semradonc.2006.04.008] [PMID: 17010908]
[3]
Barnett, G.C.; West, C.M.; Dunning, A.M.; Elliott, R.M.; Coles, C.E.; Pharoah, P.D.; Burnet, N.G. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer, 2009, 9(2), 134-142.
[http://dx.doi.org/10.1038/nrc2587] [PMID: 19148183]
[4]
(a)Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R.K. Radioprotection by plant products: present status and future prospects.Phytother. Res.,, 2005, 19(1), 1-22.
[http://dx.doi.org/10.1002/ptr.1605] [PMID: 15799007]
(b)Weiss, J.F.; Landauer, M.R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology, 2003, 189(1-2), 1-20.
[http://dx.doi.org/10.1016/S0300-483X(03)00149-5] [PMID: 12821279]
[5]
Chen, J.; Einstein, A.J.; Fazel, R.; Krumholz, H.M.; Wang, Y.; Ross, J.S.; Ting, H.H.; Shah, N.D.; Nasir, K.; Nallamothu, B.K. Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J. Am. Coll. Cardiol., 2010, 56(9), 702-711.
[http://dx.doi.org/10.1016/j.jacc.2010.05.014] [PMID: 20619569]
[6]
Durante, M.; Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer, 2008, 8(6), 465-472.
[http://dx.doi.org/10.1038/nrc2391] [PMID: 18451812]
[7]
Halliwell, B.; Aruoma, O.I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett., 1991, 281(1-2), 9-19.
[http://dx.doi.org/10.1016/0014-5793(91)80347-6] [PMID: 1849843]
[8]
Gracy, R.W.; Talent, J.M.; Kong, Y.; Conrad, C.C. Reactive oxygen species: the unavoidable environmental insult? Mutat. Res., 1999, 428(1-2), 17-22.
[http://dx.doi.org/10.1016/S1383-5742(99)00027-7] [PMID: 10517974]
[9]
Borek, C. Antioxidants and radiation therapy. J. Nutr., 2004, 134(11), 3207S-3209S.
[http://dx.doi.org/10.1093/jn/134.11.3207S] [PMID: 15514309]
[10]
Raviraj, J.; Bokkasam, V.K.; Kumar, V.S.; Reddy, U.S.; Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Ind J. Dent. Res., 2014, 25(1), 83-90.
[11]
Goff, J.P.; Epperly, M.W.; Dixon, T.; Wang, H.; Franicola, D.; Shields, D.; Wipf, P.; Li, S.; Gao, X.; Greenberger, J.S. Radiobiologic effects of GS-nitroxide (JP4-039) on the hematopoietic syndrome. In Vivo, 2011, 25(3), 315-323.
[PMID: 21576404]
[12]
C Jagetia, G. Radioprotective Potential of Plants and Herbs against the Effects of Ionizing Radiation. J. Clin. Biochem. Nutr., 2007, 40(2), 74-81.
[http://dx.doi.org/10.3164/jcbn.40.74] [PMID: 18188408]
[13]
Shirazi, A.; Mihandoost, E.; Mahdavi, S.R.; Mohseni, M. Radio-protective role of antioxidant agents. Oncol. Rev., 2012, 6(2)e16
[http://dx.doi.org/10.4081/oncol.2012.e16] [PMID: 25992214]
[14]
Pei, H.; Chen, W.; Hu, W.; Zhu, M.; Liu, T.; Wang, J.; Zhou, G. GANRA-5 protects both cultured cells and mice from various radiation types by functioning as a free radical scavenger. Free Radic. Res., 2014, 48(6), 670-678.
[http://dx.doi.org/10.3109/10715762.2014.898843] [PMID: 24580122]
[15]
Kalra, E.K. Nutraceutical--definition and introduction. AAPS PharmSci, 2003, 5(3)E25
[http://dx.doi.org/10.1208/ps050325] [PMID: 14621960]
[16]
Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. Res., 2013, 4(1), 4-8.
[http://dx.doi.org/10.4103/2231-4040.107494] [PMID: 23662276]
[17]
Bourgier, C.; Levy, A.; Vozenin, M.C.; Deutsch, E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev., 2012, 31(3-4), 699-712.
[http://dx.doi.org/10.1007/s10555-012-9381-9] [PMID: 22706781]
[18]
Luo, J. Z.; Luo, L. Ginseng on hyperglycemia: effects and mechanisms.Evidence-based complementary and alternative medicine : eCAM, 2009,6(4), 423-7.,
[19]
(a)González, E.; Cruces, M.P.; Pimentel, E.; Sánchez, P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate.Environ. Toxicol. Pharmacol., 2018, 62, 210-214.,
[http://dx.doi.org/10.1016/j.etap.2018.07.015] [PMID: 30081379]
(b)Tabeie, F.; Tabatabaei, S.M.; Mahmoud-Pashazadeh, A.; Assadi, M. Radioprotective effect of beta D-glucan and vitamin E on gamma irradiated mouse. J. Clin. Diagn. Res., 2017, 11(2), TC08-TC11.
[http://dx.doi.org/10.7860/JCDR/2017/19367.9437] [PMID: 28384957]
(c)Whitnall, M.H.; Inal, C.E.; Jackson, W.E., III; Miner, V.L.; Villa, V.; Seed, T.M. In vivo radioprotection by 5-androstenediol: stimulation of the innate immune system. Radiat. Res., 2001, 156(3), 283-293.,
[http://dx.doi.org/10.1667/0033-7587(2001)156[0283:IVRBAS]2.0.CO;2] [PMID: 11500137]
[20]
(a)Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Pharmacol. Biochem. Behav., 2014, 126, 181-186.,
[http://dx.doi.org/10.1016/j.pbb.2014.08.005] [PMID: 25159739]
(b)Abedi, S.M.; Yarmand, F.; Motallebnejad, M.; Seyedmajidi, M.; Moslemi, D.; Bijani, A.; Hosseinimehr, S.J. Radioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats.Iran. J. Pharm. Res., 2016, 15(4), 861-866.,
[PMID: 28243283]
(c)Cikman, O.; Ozkan, A.; Aras, A.B.; Soylemez, O.; Alkis, H.; Taysi, S.; Karaayvaz, M. Radioprotective effects of Nigella sativa oil against oxidative stress in liver tissue of rats exposed to total head irradiation. J. Invest. Surg., 2014, 27(5), 262-6.
[21]
Hall, E. J.; Giaccia, A. J. Radiobiology for the Radiologist, 2006, 6
[22]
Thompson, L.H. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat. Res., 2012, 751(2), 158-246.
[http://dx.doi.org/10.1016/j.mrrev.2012.06.002] [PMID: 22743550]
[23]
(a)Harper, J.W.; Elledge, S.J. The DNA damage response: ten years after.Mol. Cell, 2007, 28(5), 739-745.,
[http://dx.doi.org/10.1016/j.molcel.2007.11.015] [PMID: 18082599]
(b)Petrini, J.H.; Stracker, T.H. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol., 2003, 13(9), 458-462.
[http://dx.doi.org/10.1016/S0962-8924(03)00170-3] [PMID: 12946624]
[24]
(a)Ditch, S.; Paull, T.T. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.Trends Biochem. Sci., 2012, 37(1), 15-22.,
[http://dx.doi.org/10.1016/j.tibs.2011.10.002] [PMID: 22079189]
(b)Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal., 2014, 21(2), 260-292.
[http://dx.doi.org/10.1089/ars.2013.5489] [PMID: 24382094]
[25]
Goodarzi, A.A.; Noon, A.T.; Deckbar, D.; Ziv, Y.; Shiloh, Y.; Löbrich, M.; Jeggo, P.A. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell, 2008, 31(2), 167-177.
[http://dx.doi.org/10.1016/j.molcel.2008.05.017] [PMID: 18657500]
[26]
Hutchinson, F. Sulfhydryl groups and the oxygen effect on irradiated dilute solutions of enzymes and nucleic acids. Radiat. Res., 1961, 14(6), 721-731.
[http://dx.doi.org/10.2307/3571013] [PMID: 13717054]
[27]
Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, 51(3), 794-798.
[PMID: 1846317]
[28]
Elledge, R.M.; Lee, W.H. Life and death by p53. BioEssays, 1995, 17(11), 923-930.
[http://dx.doi.org/10.1002/bies.950171105] [PMID: 8526886]
[29]
Simone, C.B., II; Simone, N.L.; Simone, V.; Simone, C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, Part 2. Altern. Ther. Health Med., 2007, 13(2), 40-47.
[PMID: 17405678]
[30]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: a current overview. Front. Pharmacol., 2012, 2, 94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[31]
(a)Kumar, B.; Joshi, J.; Kumar, A.; Pandey, B.N.; Hazra, B.; Mishra, K.P. Radiosensitization by diospyrin diethylether in MCF-7 breast carcinoma cell line. Mol. Cell. Biochem., 2007, 304(1-2), 287-296.
[http://dx.doi.org/10.1007/s11010-007-9511-9] [PMID: 17534696]
(b)Kumar, B.; Kumar, A.; Pandey, B.N.; Hazra, B.; Mishra, K.P. Increased cytotoxicity by the combination of radiation and diospyrin diethylether in fibrosarcoma in culture and in tumor. Int. J. Radiat. Biol., 2008, 84(5), 429-440.
[http://dx.doi.org/10.1080/09553000802030736] [PMID: 18464072]
[32]
Strom, E.; Sathe, S.; Komarov, P.G.; Chernova, O.B.; Pavlovska, I.; Shyshynova, I.; Bosykh, D.A.; Burdelya, L.G.; Macklis, R.M.; Skaliter, R.; Komarova, E.A.; Gudkov, A.V. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat. Chem. Biol., 2006, 2(9), 474-479.
[http://dx.doi.org/10.1038/nchembio809] [PMID: 16862141]
[33]
Erlacher, M.; Michalak, E.M.; Kelly, P.N.; Labi, V.; Niederegger, H.; Coultas, L.; Adams, J.M.; Strasser, A.; Villunger, A. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood, 2005, 106(13), 4131-4138.
[http://dx.doi.org/10.1182/blood-2005-04-1595] [PMID: 16118324]
[34]
Knatko, E.V.; Ibbotson, S.H.; Zhang, Y.; Higgins, M.; Fahey, J.W.; Talalay, P.; Dawe, R.S.; Ferguson, J.; Huang, J.T.; Clarke, R.; Zheng, S.; Saito, A.; Kalra, S.; Benedict, A.L.; Honda, T.; Proby, C.M.; Dinkova-Kostova, A.T. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev. Res. (Phila.), 2015, 8(6), 475-486.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0362] [PMID: 25804610]
[35]
Lee, S.J.; Choi, S.A.; Lee, K.H.; Chung, H.Y.; Kim, T.H.; Cho, C.K.; Lee, Y.S. Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones, 2001, 6(3), 273-281.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0273:ROIHSP>2.0.CO;2] [PMID: 11599569]
[36]
(a)Akerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 545-555.
[http://dx.doi.org/10.1038/nrm2938] [PMID: 20628411]
(b)Kim, H.P.; Morse, D.; Choi, A.M. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin. Ther. Targets, 2006, 10(5), 759-769.
[http://dx.doi.org/10.1517/14728222.10.5.759] [PMID: 16981832]
[37]
Milam, J.E.; Keshamouni, V.G.; Phan, S.H.; Hu, B.; Gangireddy, S.R.; Hogaboam, C.M.; Standiford, T.J.; Thannickal, V.J.; Reddy, R.C. PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(5), L891-L901.
[http://dx.doi.org/10.1152/ajplung.00333.2007] [PMID: 18162602]
[38]
Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D.; Cappelli, S.; Di Brina, L.; Loi, M.; Biti, G.; Livi, L. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United European Gastroenterol. J., 2017, 5(2), 218-226.
[http://dx.doi.org/10.1177/2050640616640443] [PMID: 28344789]
[39]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med., 2006, 12(9), 440-450.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[40]
Rothkamm, K.; Krüger, I.; Thompson, L.H.; Löbrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol., 2003, 23(16), 5706-5715.
[http://dx.doi.org/10.1128/MCB.23.16.5706-5715.2003] [PMID: 12897142]
[41]
Volcic, M.; Karl, S.; Baumann, B.; Salles, D.; Daniel, P.; Fulda, S.; Wiesmüller, L. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res., 2012, 40(1), 181-195.
[http://dx.doi.org/10.1093/nar/gkr687] [PMID: 21908405]
[42]
Jayakumar, S.; Pal, D.; Sandur, S.K. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat. Res., 2015, 779, 33-45.
[http://dx.doi.org/10.1016/j.mrfmmm.2015.06.007] [PMID: 26133502]
[43]
Lachumy, S.J.; Oon, C.E.; Deivanai, S.; Saravanan, D.; Vijayarathna, S.; Choong, Y.S.; Yeng, C.; Latha, L.Y.; Sasidharan, S. Herbal remedies for combating irradiation: a green anti-irradiation approach. Asian Pac. J. Cancer Prev., 2013, 14(10), 5553-5565.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5553] [PMID: 24289545]
[44]
Brown, P.E. Mechanism of action of aminothiol radioprotectors. Nature, 1967, 213(5074), 363-364.
[http://dx.doi.org/10.1038/213363a0] [PMID: 6029518]
[45]
(a)Sharygin, V.L.; Pulatova, M.K.; Shliakova, T.G.; Mitrokhin, IuI.; Todorov, I.N. [Activation of deoxyribonucleotide synthesis by radioprotectants and antioxidants as a key stage in formation of body resistance to DNA-damaging factors]. Izv. Akad. Nauk Ser. Biol., 2005, (4), 401-422.,
[http://dx.doi.org/10.1007/s10525-005-0109-z] [PMID: 16212261]
(b)Thelander, L. Ribonucleotide reductase and mitochondrial DNA synthesis. Nat. Genet., 2007, 39(6), 703-704.
[http://dx.doi.org/10.1038/ng0607-703] [PMID: 17534360]
[46]
Guo, C.Y.; Luo, L.; Urata, Y.; Goto, S.; Huang, W.J.; Takamura, S.; Hayashi, F.; Doi, H.; Kitajima, Y.; Ono, Y.; Ogi, T.; Li, T.S. Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice. Sci. Rep., 2015, 5, 8055.
[http://dx.doi.org/10.1038/srep08055] [PMID: 25623887]
[47]
(a)Dumont, F.; Le Roux, A.; Bischoff, P. Radiation countermeasure agents: an update. Expert Opin. Ther. Pat., 2010, 20(1), 73-101.,
[http://dx.doi.org/10.1517/13543770903490429] [PMID: 20021286]
(b)Schaue, D.; Kachikwu, E.L.; McBride, W.H. Cytokines in radiobiological responses: a review. Radiat. Res., 2012, 178(6), 505-523.
[http://dx.doi.org/10.1667/RR3031.1] [PMID: 23106210]
[48]
Garg, A.K.; Buchholz, T.A.; Aggarwal, B.B. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid. Redox Signal., 2005, 7(11-12), 1630-1647.
[http://dx.doi.org/10.1089/ars.2005.7.1630] [PMID: 16356126]
[49]
Kamata, H.; Shibukawa, Y.; Oka, S.I.; Hirata, H. Epidermal growth factor receptor is modulated by redox through multiple mechanisms. Effects of reductants and H2O2. Eur. J. Biochem., 2000, 267(7), 1933-1944.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01194.x] [PMID: 10727932]
[50]
Loo, G. Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation. [review] J. Nutr. Biochem., 2003, 14(2), 64-73.
[http://dx.doi.org/10.1016/S0955-2863(02)00251-6] [PMID: 12667597]
[51]
(a)Meyer, M.; Pahl, H.L.; Baeuerle, P.A. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem. Biol. Interact., 1994, 91(2-3), 91-100.,
[http://dx.doi.org/10.1016/0009-2797(94)90029-9] [PMID: 8194138]
(b)Müller, J.M.; Rupec, R.A.; Baeuerle, P.A. Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods, 1997, 11(3), 301-312.
[http://dx.doi.org/10.1006/meth.1996.0424] [PMID: 9073573]
[52]
Li, P.; Zhao, Q.L.; Wu, L.H.; Jawaid, P.; Jiao, Y.F.; Kadowaki, M.; Kondo, T. Isofraxidin, a potent reactive oxygen species (ROS) scavenger, protects human leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in p53-independent manner. Apoptosis: Int. J. Programmed Cell Death, 2014, 19(6), 1043-1053.
[53]
Kuntić, V.S.; Stanković, M.B.; Vujić, Z.B.; Brborić, J.S.; Uskoković-Marković, S.M. Radioprotectors - the evergreen topic. Chem. Biodivers., 2013, 10(10), 1791-1803.
[http://dx.doi.org/10.1002/cbdv.201300054] [PMID: 24130023]
[54]
Joshi, Y.; Jadhav, T.; Kadam, V. Radioprotective-A pharmacological intervention for protection against ionizing radiations: A review. Internet J. Intern. Med., 2010, 8(2), 101-105.
[55]
(a)Sparnins, V.L.; Barany, G.; Wattenberg, L.W. .Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis, 1988, 9(1), 131-134.,
[http://dx.doi.org/10.1093/carcin/9.1.131] [PMID: 3335037]
(b)Wargovich, M.J. Diallyl sulfide, a flavor component of garlic (Allium sativum), inhibits dimethylhydrazine-induced colon cancer. Carcinogenesis, 1987, 8(3), 487-489.
[http://dx.doi.org/10.1093/carcin/8.3.487] [PMID: 3815744]
[56]
Shukla, Y.; Taneja, P. Antimutagenic effects of garlic extract on chromo-somal aberrations. Cancer Lett., 2002, 176(1), 31-36.
[http://dx.doi.org/10.1016/S0304-3835(01)00774-1] [PMID: 11790451]
[57]
Smith, T.J.; Guo, Z.Y.; Thomas, P.E.; Chung, F.L.; Morse, M.A.; Elkind, K.; Yang, C.S. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in mouse lung microsomes and its inhibition by isothiocyanates. Cancer Res., 1990, 50(21), 6817-6822.
[PMID: 2208146]
[58]
Chittezhath, M.; Kuttan, G. Radioprotective activity of naturally occurring organosulfur compounds. Tumori, 2006, 92(2), 163-169.
[http://dx.doi.org/10.1177/030089160609200213] [PMID: 16724697]
[59]
Chang, H.S.; Endoh, D.; Ishida, Y.; Takahashi, H.; Ozawa, S.; Hayashi, M.; Yabuki, A.; Yamato, O. Radioprotective effect of alk(en)yl thiosulfates derived from allium vegetables against DNA damage caused by X-ray irradiation in cultured cells: antiradiation potential of onions and garlic. Scientific World J., 2012, 2012846750
[http://dx.doi.org/10.1100/2012/846750] [PMID: 22919357]
[60]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[61]
(a)Grunberger, D.; Banerjee, R.; Eisinger, K.; Oltz, E.M.; Efros, L.; Caldwell, M.; Estevez, V.; Nakanishi, K. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis.Experientia,1988, 44(3), 230-232.,
[http://dx.doi.org/10.1007/BF01941717] [PMID: 2450776]
(b)Natarajan, K.; Singh, S.; Burke, T.R. Jr.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9090-9095.
[http://dx.doi.org/10.1073/pnas.93.17.9090] [PMID: 8799159]
[62]
(a)Calikoglu, M.; Tamer, L.; Sucu, N.; Coskun, B.; Ercan, B.; Gul, A.; Calikoglu, I.; Kanik, A. The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion.Pharmacol. Res., 2003, 48(4), 397-403.,
[http://dx.doi.org/10.1016/S1043-6618(03)00156-7] [PMID: 12902211]
(b)Gurel, A.; Armutcu, F.; Sahin, S.; Sogut, S.; Ozyurt, H.; Gulec, M.; Kutlu, N.O.; Akyol, O. Protective role of alpha-tocopherol and caffeic acid phenethyl ester on ischemia-reperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clin. Chim. Acta, 2004, 339(1-2), 33-41.
[63]
Yildiz, O.G.; Soyuer, S.; Saraymen, R.; Eroglu, C. Protective effects of caffeic acid phenethyl ester on radiation induced lung injury in rats. Clin. Invest. Med., 2008, 31(5), E242-E247.
[http://dx.doi.org/10.25011/cim.v31i5.4870] [PMID: 18980713]
[64]
Linard, C.; Marquette, C.; Mathieu, J.; Pennequin, A.; Clarençon, D.; Mathé, D. Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(2), 427-434.
[http://dx.doi.org/10.1016/j.ijrobp.2003.09.039] [PMID: 14751512]
[65]
(a)Inano, H.; Onoda, M. .Radioprotective action of curcumin extracted from Curcuma longa LINN: inhibitory effect on formation of urinary 8-hydroxy- 2′-deoxyguanosine, tumorigenesis, but not mortality, induced by gamma-ray irradiation. Int. J. Radiat. Oncol. Biol. Phys., 2002, 53(3), 735-743.,
[http://dx.doi.org/10.1016/S0360-3016(02)02794-3] [PMID: 12062620]
(b)Kalpana, C.; Menon, V.P. Curcumin ameliorates oxidative stress during nicotine-induced lung toxicity in Wistar rats. Ital. J. Biochem., 2004, 53(2), 82-86.
[PMID: 15646012]
[66]
Srinivasan, M.; Rajendra Prasad, N.; Menon, V.P. Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat. Res., 2006, 611(1-2), 96-103.
[http://dx.doi.org/10.1016/j.mrgentox.2006.07.002] [PMID: 16973408]
[67]
Okunieff, P.; Xu, J.; Hu, D.; Liu, W.; Zhang, L.; Morrow, G.; Pentland, A.; Ryan, J.L.; Ding, I. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int. J. Radiat. Oncol. Biol. Phys., 2006, 65(3), 890-898.
[http://dx.doi.org/10.1016/j.ijrobp.2006.03.025] [PMID: 16751071]
[68]
Shimoi, K.; Masuda, S.; Furugori, M.; Esaki, S.; Kinae, N. Radioprotective effect of antioxidative flavonoids in gamma-ray irradiated mice. Carcinogenesis, 1994, 15(11), 2669-2672.
[http://dx.doi.org/10.1093/carcin/15.11.2669] [PMID: 7955124]
[69]
Landauer, M.R.; Srinivasan, V.; Seed, T.M. Genistein treatment protects mice from ionizing radiation injury. J. Appl. Toxicol., 2003, 23(6), 379-385.
[http://dx.doi.org/10.1002/jat.904] [PMID: 14635262]
[70]
Calveley, V.L.; Jelveh, S.; Langan, A.; Mahmood, J.; Yeung, I.W.; Van Dyk, J.; Hill, R.P. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat. Res., 2010, 173(5), 602-611.
[http://dx.doi.org/10.1667/RR1896.1] [PMID: 20426659]
[71]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[72]
Li, Y.; Cao, Z.; Zhu, H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. Pharmacol. Res., 2006, 53(1), 6-15.
[http://dx.doi.org/10.1016/j.phrs.2005.08.002] [PMID: 16169743]
[73]
Carsten, R.E.; Bachand, A.M.; Bailey, S.M.; Ullrich, R.L. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat. Res., 2008, 169(6), 633-638.
[http://dx.doi.org/10.1667/RR1190.1] [PMID: 18494544]
[74]
Valenzuela, A.; Guerra, R.; Videla, L.A. Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med., 1986, (6), 438-440.
[http://dx.doi.org/10.1055/s-2007-969247] [PMID: 3562659]
[75]
Haková, H.; Misúrová, E. Therapeutical effect of silymarin on nucleic acids in the various organs of rats after radiation injury. Radiats. Biol. Radioecol., 1996, 36(3), 365-370.
[PMID: 8704911]
[76]
Mira, L.; Silva, M.; Manso, C.F. Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem. Pharmacol., 1994, 48(4), 753-759.
[http://dx.doi.org/10.1016/0006-2952(94)90053-1] [PMID: 8080448]
[77]
Ramadan, L.A.; Roushdy, H.M.; Abu Senna, G.M.; Amin, N.E.; El-Deshw, O.A. Radioprotective effect of silymarin against radiation induced hepatotoxicity. Pharmacol. Res., 2002, 45(6), 447-454.
[http://dx.doi.org/10.1006/phrs.2002.0990] [PMID: 12162944]
[78]
Aeschbach, R.; Loliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol., 1994, 32(1), 31-36.
[79]
Archana, P.R.; Nageshwar Rao, B.; Ballal, M.; Satish Rao, B.S. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity. Mutat. Res., 2009, 680(1-2), 70-77.
[http://dx.doi.org/10.1016/j.mrgentox.2009.09.010] [PMID: 19815091]
[80]
(a)Motohashi, N.; Ashihara, Y.; Yamagami, C.; Saito, Y. Antimutagenic effects of dehydrozingerone and its analogs on UV-induced mutagenesis in Escherichia coli. Mutat. Res., 1997, 377(1), 17-25.,
[http://dx.doi.org/10.1016/S0027-5107(97)00054-7] [PMID: 9219575]
(b)Shin, S.G.; Kim, J.Y.; Chung, H.Y.; Jeong, J.C. Zingerone as an antioxidant against peroxynitrite. J. Agric. Food Chem., 2005, 53(19), 7617-7622.
[http://dx.doi.org/10.1021/jf051014x] [PMID: 16159194]
[81]
Rao, B.N.; Rao, B.S.; Aithal, B.K.; Kumar, M.R. Radiomodifying and anticlastogenic effect of Zingerone on Swiss albino mice exposed to whole body gamma radiation. Mutat. Res., 2009, 677(1-2), 33-41.
[http://dx.doi.org/10.1016/j.mrgentox.2009.05.004] [PMID: 19463966]
[82]
Rao, B.N.; Rao, B.S. Antagonistic effects of Zingerone, a phenolic alkanone against radiation-induced cytotoxicity, genotoxicity, apoptosis and oxidative stress in Chinese hamster lung fibroblast cells growing in vitro. Mutagenesis, 2010, 25(6), 577-587.
[http://dx.doi.org/10.1093/mutage/geq043] [PMID: 20713432]
[83]
Qin, Y.; Xiong, L.; Li, M.; Liu, J.; Wu, H.; Qiu, H.; Mu, H.; Xu, X.; Sun, Q. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity. J. Agric. Food Chem., 2018, 66(17), 4373-4383.
[http://dx.doi.org/10.1021/acs.jafc.8b00388] [PMID: 29648814]
[84]
(a)Sun, Y.; Tang, J.; Gu, X.; Li, D. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. Int. J. Biol. Macromol., 2005, 36(5), 283-289.,
[http://dx.doi.org/10.1016/j.ijbiomac.2005.07.005] [PMID: 16129482]
(b)Yang, Z.; Zhao, J.; Wang, J.; Li, J.; Ouyang, K.; Wang, W. Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats. Int. J. Biol. Macromol., 2019, 123, 343-349.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.110] [PMID: 30445074]
[85]
Wang, J.; Chang, Y.; Wu, F.; Xu, X.; Xue, C. Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall. Carbohydr. Polym., 2018, 186, 439-444.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.041] [PMID: 29456007]
[86]
(a)Hasnain, S.M.; Hasnain, M.S.; Nayak, A.K. Natural polysaccharides: sources and extraction methodologies.In: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019; pp. 1-4;
(b)Hu, W.B.; Ouyang, K.H.; Wu, G.Q.; Chen, H.; Xiong, L.; Liu, X.; Wang, W.J. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J. Funct. Foods, 2018, 48, 337-350.
[http://dx.doi.org/10.1016/j.jff.2018.07.031]
[87]
Li, X.; Wang, L.; Wang, Y.; Xiong, Z. Effect of drying method on physicochemical properties and antioxidant activities of Hohenbuehelia serotina polysaccharides. Process Biochem., 2016, 51(8), 1100-1108.
[http://dx.doi.org/10.1016/j.procbio.2016.05.006]
[88]
Li, X.; Wang, L.; Wang, Z. Radioprotective activity of neutral polysaccharides isolated from the fruiting bodies of Hohenbuehelia serotina. Phys. Med., 2015, 31(4), 352-359.
[89]
Cui, F.; Li, M.; Chen, Y.; Liu, Y.; He, Y.; Jiang, D.; Tong, J.; Li, J.; Shen, X. Protective effects of polysaccharides from Sipunculus nudus on Beagle dogs exposed to γ-radiation. PLoS One, 2014, 9(8)e104299
[http://dx.doi.org/10.1371/journal.pone.0104299] [PMID: 25093861]
[90]
Li, Q.; Cai, C.; Chang, Y.; Zhang, F.; Linhardt, R.J.; Xue, C.; Li, G.; Yu, G. A novel structural fucosylated chondroitin sulfate from Holothuria mexicana and its effects on growth factors binding and anticoagulation. Carbohydr. Polym., 2018, 181, 1160-1168.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.100] [PMID: 29253945]
[91]
Profant, V.; Johannessen, C.; Blanch, E.W.; Bouř, P.; Baumruk, V. Effects of sulfation and the environment on the structure of chondroitin sulfate studied via Raman optical activity. Phys. Chem. Chem. Phys., 2019, 21(14), 7367-7377.
[http://dx.doi.org/10.1039/C9CP00472F] [PMID: 30899920]
[92]
Xie, X.D.; Su, G.; Nian, X.F.; Ma, G.R.; Jia, Z.P. Protective effect of chondroitin sulfate-A on X-ray irradiated mice. J. Northwest Normal Uni., 2013, 49, 86-90.
[93]
Wang, L.; Li, X. Radioprotective effect of Hohenbuehelia serotina polysaccharides through mediation of ER apoptosis pathway in vivo. Int. J. Biol. Macromol., 2019, 127, 18-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.267] [PMID: 30605745]
[94]
Li, X.; Wang, L.; Wang, B. Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chem., 2017, 229, 479-486.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.051] [PMID: 28372204]
[95]
(a)Bao, H.; Zhou, R.; You, S.; Wu, S.; Wang, Q.; Cui, S.W. Gelation mechanism of polysaccharides from Auricularia auricula-judae.Food Hydrocoll., 2018, 76, 35-41.,
[http://dx.doi.org/10.1016/j.foodhyd.2017.07.023]
(b)Nguyen, T.L.; Wang, D.; Hu, Y.; Fan, Y.; Wang, J.; Abula, S.; Guo, L.; Zhang, J. khakame, S.K.; Dang, B.K. Immuno-enhancing activity of sulfated Auricularia auricula polysaccharides. Carbohydr. Polym., 2012, 89(4), 1117-1122.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.082] [PMID: 24750922]
[96]
(a)Minjares-Fuentes, R.; Femenia, A.; Comas-Serra, F.; Rodríguez-González, V.M. Compositional and structural features of the main bioactive polysaccharides present in the Aloe vera Plant. J. AOAC Int., 2018, 101(6), 1711-1719.,
[http://dx.doi.org/10.5740/jaoacint.18-0119] [PMID: 29895349]
(b)He, K. Aloe vera: Chemistry, Major Chemical Components, Quantification, and Molecular Weight Determination of Polysaccharides. J. AOAC Int., 2018, 101(6), 1709-1710.
[http://dx.doi.org/10.5740/jaoacint.18-0118] [PMID: 29895344]
[97]
Kumar, S.; Tiku, A.B. Immunomodulatory potential of acemannan (polysaccharide from Aloe vera) against radiation induced mortality in Swiss albino mice. Food Agric. Immunol., 2016, 27(1), 72-86.
[http://dx.doi.org/10.1080/09540105.2015.1079594]
[98]
Wang, Z.; Huang, Z.; Wu, Q.; Zhou, J.; Zhu, X.; Li, Q.; Liu, Z. The modulating of aloe polysaccharides on the cell cycle and cycle regulating protein expression in X-ray irradiated non-malignant cells Zhong Yao Cai, 2005, 28(6), 482-485.
[PMID: 16209264]
[99]
Liu, L.; Shen, J.; Zhao, C.; Wang, X.; Yao, J.; Gong, Y.; Yang, X. Dietary Astragalus polysaccharide alleviated immunological stress in broilers exposed to lipopolysaccharide. Int. J. Biol. Macromol., 2015, 72, 624-632.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.057] [PMID: 25239195]
[100]
Zhang, Y.; Zhou, T.; Wang, H.; Cui, Z.; Cheng, F.; Wang, K.P. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.). Diels. Carbohydr. Polym., 2016, 147, 401-408.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.002] [PMID: 27178946]
[101]
Liu, Y.; Sun, Y.; Huang, G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol., 2018, 111, 780-786.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.086] [PMID: 29355627]
[102]
Sun, Y.L.; Gu, X.H.; Li, D.Y. TANG, J., Study on radioprotection effects of Angelica sinensis polysaccharides on sub-acute radiation-injured mouse. Hum. Exp. Toxicol., 2007, 28(2), 305-308.
[103]
Empey, L.R.; Papp, J.D.; Jewell, L.D.; Fedorak, R.N. Mucosal protective effects of vitamin E and misoprostol during acute radiation-induced enteritis in rats. Dig. Dis. Sci., 1992, 37(2), 205-214.
[http://dx.doi.org/10.1007/BF01308173] [PMID: 1735337]
[104]
Nair, C.K.K.; Wani, K.; Rajagopalan, R.; Huilgol, N.G.; Kagiya, V.T.; Kapoor, S. Mechanism of radioprotection by TMG, a water soluble vitamin E. J. Radiat. Res., 1999, 40(4), 451.
[105]
Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta, 2012, 1826(2), 443-457.
[PMID: 22728050]
[106]
Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem., 1994, 269(18), 13685-13688.
[http://dx.doi.org/10.1016/S0021-9258(17)36884-9] [PMID: 8175804]
[107]
Cai, L.; Koropatnick, J.; Cherian, M.G. Roles of vitamin C in radiation-induced DNA damage in presence and absence of copper. Chem. Biol. Interact., 2001, 137(1), 75-88.
[http://dx.doi.org/10.1016/S0009-2797(01)00210-1] [PMID: 11518565]
[108]
Yamamoto, T.; Kinoshita, M.; Shinomiya, N.; Hiroi, S.; Sugasawa, H.; Matsushita, Y.; Majima, T.; Saitoh, D.; Seki, S. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation. J. Radiat. Res. (Tokyo), 2010, 51(2), 145-156.
[http://dx.doi.org/10.1269/jrr.09078] [PMID: 19959877]
[109]
Xiao, L.; Tsutsui, T.; Miwa, N. The lipophilic vitamin C derivative, 6-o-palmitoylascorbate, protects human lymphocytes, preferentially over ascorbate, against X-ray-induced DNA damage, lipid peroxidation, and protein carbonylation. Mol. Cell. Biochem., 2014, 394(1-2), 247-259.
[http://dx.doi.org/10.1007/s11010-014-2101-8] [PMID: 24898782]
[110]
Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit. Rev. Food Sci. Nutr., 2014, 54(8), 1032-1049.
[http://dx.doi.org/10.1080/10408398.2011.623799] [PMID: 24499120]
[111]
Britton, G. Structure and properties of carotenoids in relation to function. FASEB J., 1995, 9(15), 1551-1558.
[http://dx.doi.org/10.1096/fasebj.9.15.8529834] [PMID: 8529834]
[112]
Srinivasan, M.; Sudheer, A.R.; Pillai, K.R.; Kumar, P.R.; Sudhakaran, P.R.; Menon, V.P. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro. Biochim. Biophys. Acta, 2007, 1770(4), 659-665.
[http://dx.doi.org/10.1016/j.bbagen.2006.11.008] [PMID: 17189673]
[113]
Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 1989, 274(2), 532-538.
[http://dx.doi.org/10.1016/0003-9861(89)90467-0] [PMID: 2802626]
[114]
Franceschi, S.; Bidoli, E.; La Vecchia, C.; Talamini, R.; D’Avanzo, B.; Negri, E. Tomatoes and risk of digestive-tract cancers. Int. J. Cancer, 1994, 59(2), 181-184.
[http://dx.doi.org/10.1002/ijc.2910590207] [PMID: 7927916]
[115]
Srinivasan, M.; Devipriya, N.; Kalpana, K.B.; Menon, V.P. Lycopene: An antioxidant and radioprotector against gamma-radiation-induced cellular damages in cultured human lymphocytes. Toxicology, 2009, 262(1), 43-49.
[http://dx.doi.org/10.1016/j.tox.2009.05.004] [PMID: 19450652]
[116]
Gajowik, A.; Dobrzyńska, M.M. The evaluation of protective effect of lycopene against genotoxic influence of X-irradiation in human blood lymphocytes. Radiat. Environ. Biophys., 2017, 56(4), 413-422.
[http://dx.doi.org/10.1007/s00411-017-0713-6] [PMID: 28913689]
[117]
Krzyzanowska, J.; Czubacka, A.; Oleszek, W. Dietary phytochemicals and human health. Adv. Exp. Med. Biol., 2010, 698, 74-98.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_7] [PMID: 21520705]
[118]
Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the vitamins And Lifestyle (VITAL) study. Am. J. Epidemiol., 2009, 169(7), 815-828.
[http://dx.doi.org/10.1093/aje/kwn409] [PMID: 19208726]
[119]
Mikkelsen, C.S.; Mikkelsen, D.B.; Lindegaard, H.M. Carotinaemia in patient with excessive beta-carotene food-intake and dysregulated diabetes mellitus. Ugeskr. Laeger, 2009, 171(5), 315-316.
[PMID: 19176161]
[120]
(a)Misawa, E.; Tanaka, M.; Nomaguchi, K.; Nabeshima, K.; Yamada, M.; Toida, T.; Iwatsuki, K. Oral ingestion of Aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats. J. Agric. Food Chem., 2012, 60(11), 2799-2806.,
[http://dx.doi.org/10.1021/jf204465j] [PMID: 22352711]
(b)Kew, S.; Wells, S.; Thies, F.; McNeill, G.P.; Quinlan, P.T.; Clark, G.T.; Dombrowsky, H.; Postle, A.D.; Calder, P.C. The effect of eicosapentaenoic acid on rat lymphocyte proliferation depends upon its position in dietary triacylglycerols. J. Nutr., 2003, 133(12), 4230-4238.,
[http://dx.doi.org/10.1093/jn/133.12.4230] [PMID: 14652377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy