Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Systematic Review Article

Alzheimer's Disease: A Silent Pandemic - A Systematic Review on the Situation and Patent Landscape of the Diagnosis

Author(s): Luis Daniel Goyzueta-Mamani*, Miguel Angel Chávez-Fumagalli, Karla Alvarez-Fernandez, Jorge A. Aguilar-Pineda, Rita Nieto-Montesinos, Gonzalo Davila Del-Carpio, Karin J. Vera-Lopez* and Christian L. Lino Cardenas

Volume 16, Issue 4, 2022

Published on: 25 May, 2022

Page: [355 - 378] Pages: 24

DOI: 10.2174/1872208316666220408114129

Price: $65

Abstract

Background: Alzheimer's disease (AD) is characterized by cognitive impairment, tau protein deposits, and amyloid beta plaques. AD impacted 44 million people in 2016, and it is estimated to affect 100 million people by 2050. AD is disregarded as a pandemic compared with other diseases. To date, there is no effective treatment or diagnosis.

Objective: We aimed to discuss the current tools used to diagnose COVID-19, point out their potential to be adapted for AD diagnosis, and review the landscape of existing patents in the AD field and future perspectives for AD diagnosis.

Methods: We carried out a scientific screening following a research strategy in PubMed; Web of Science; the Derwent Innovation Index; the KCI-Korean Journal Database; Sci- ELO; the Russian Science Citation index; and the CDerwent, EDerwent, and MDerwent index databases.

Results: A total of 326 from 6,446 articles about AD and 376 from 4,595 articles about COVID-19 were analyzed. Of these, AD patents were focused on biomarkers and neuroimaging with no accurate, validated diagnostic methods, and only 7% of kit development patents were found. In comparison, COVID-19 patents were 60% about kit development for diagnosis; they are highly accurate and are now commercialized.

Conclusion: AD is still neglected and not recognized as a pandemic that affects the people and economies of all nations. There is a gap in the development of AD diagnostic tools that could be filled if the interest and effort that has been invested in tackling the COVID-19 emergency could also be applied for innovation.

Keywords: Alzheimer's disease, COVID-19, diagnostic tools, biomarkers, patent, silent pandemic.

Graphical Abstract
[1]
Small GW, Greenfield S. Current and future treatments for Alzheimer disease. Am J Geriatr Psychiatry 2015; 23(11): 1101-5.
[http://dx.doi.org/10.1016/j.jagp.2015.08.006] [PMID: 26614911]
[2]
Ziegler-Graham K, Brookmeyer R, Johnson E, Arrighi HM. Worldwide variation in the doubling time of Alzheimer’s disease incidence rates. Alzheimers Dement 2008; 4(5): 316-23.
[http://dx.doi.org/10.1016/j.jalz.2008.05.2479] [PMID: 18790458]
[3]
Alzheimer A. Uber einen eigenartigen schweren erkrankungsprozess der hirninde. Neurol Cent 1906; 25: 1134.
[4]
Nichols E, Szoeke CEI, Vollset SE, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(1): 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[5]
Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060) in adults aged ≥65 years. Alzheimers Dement 2019; 15(1): 17-24.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3063] [PMID: 30243772]
[6]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[7]
Wimo A, Guerchet M, Ali GC, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13(1): 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150] [PMID: 27583652]
[8]
2019 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[9]
World Health Organization Dementia. Fact Sheet 2017.
[10]
Chávez-Fumagalli MA, Shrivastava P, Aguilar-Pineda JA, et al. Diagnosis of Alzheimer’s disease in developed and developing countries: Systematic review and meta-analysis of diagnostic test accuracy. J Alzheimers Dis Rep 2021; 5(1): 15-30.
[http://dx.doi.org/10.3233/ADR-200263] [PMID: 33681713]
[11]
Etindele Sosso FA, Nakamura O, Nakamura M. Epidemiology of Alzheimer’s disease: Comparison between Africa and South America. J Neurol Neurosci 2017; 8(3)
[http://dx.doi.org/10.21767/2171-6625.1000204]
[12]
Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 2011; 7(5): 532-9.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410] [PMID: 21889116]
[13]
Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 2010; 67(4): 428-33.
[http://dx.doi.org/10.1001/archneurol.2010.38] [PMID: 20385908]
[14]
Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 2016; 30: 25-48.
[http://dx.doi.org/10.1016/j.arr.2016.01.002] [PMID: 26827786]
[15]
Jones DT, Graff-Radford J, Lowe VJ, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 2017; 97: 143-59.
[http://dx.doi.org/10.1016/j.cortex.2017.09.018] [PMID: 29102243]
[16]
Holtzman JL. Are we prepared to deal with the Alzheimer’s disease pandemic? Clin Pharmacol Ther 2010; 88(4): 563-5.
[http://dx.doi.org/10.1038/clpt.2010.84] [PMID: 20703225]
[17]
Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 2019; 72: 87-9.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.001] [PMID: 30954437]
[18]
Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 2009; 65(4): 403-13.
[http://dx.doi.org/10.1002/ana.21610] [PMID: 19296504]
[19]
Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 21.
[http://dx.doi.org/10.1186/s13024-019-0325-5] [PMID: 31174557]
[20]
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s disease. Alzheimers Res Ther 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13195-019-0485-0] [PMID: 31010420]
[21]
World Health Organization. COVID-19 weekly epidemiological update. 2020.
[22]
Moulahoum H, Ghorbanizamani F, Zihnioglu F, Turhan K, Timur S. How should diagnostic kits development adapt quickly in COVID 19-like pandemic models? Pros and cons of sensory platforms used in COVID-19 sensing. Talanta 2021.222121534
[http://dx.doi.org/10.1016/j.talanta.2020.121534] [PMID: 33167242]
[23]
Soares HD, Potter WZ, Pickering E, et al. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch Neurol 2012; 69(10): 1310-7.
[http://dx.doi.org/10.1001/archneurol.2012.1070] [PMID: 22801723]
[24]
Suárez-Calvet M, Karikari TK, Ashton NJ, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med 2020; 12(12)e12921
[http://dx.doi.org/10.15252/emmm.202012921] [PMID: 33169916]
[25]
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. CDC WONDER online database: About Underlying Cause of Death, 1999-2018. Available from: https://wonder.cdc.gov/ucd-icd10.htmlAccessed on Jul 3, 2021.
[26]
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016; 5(1): 210.
[http://dx.doi.org/10.1186/s13643-016-0384-4] [PMID: 27919275]
[27]
Ozsahin I, Sekeroglu B, Mok GSP. The use of back propagation neural networks and 18F-Florbetapir PET for early detection of Alzheimer’s disease using Alzheimer’s Disease Neuroimaging Initiative database. PLoS One 2019; 14(12)e0226577
[http://dx.doi.org/10.1371/journal.pone.0226577] [PMID: 31877173]
[28]
Barthel H. First Tau PET tracer approved: Toward accurate in vivo diagnosis of Alzheimer disease. J Nucl Med 2020; 61(10): 1409-10.
[http://dx.doi.org/10.2967/jnumed.120.252411] [PMID: 33004646]
[29]
Gossye H, Van Broeckhoven C, Engelborghs S. The use of biomarkers and genetic screening to diagnose frontotemporal dementia: Evidence and clinical implications. Front Neurosci 2019; 13: 757.
[http://dx.doi.org/10.3389/fnins.2019.00757] [PMID: 31447625]
[30]
Bloom GS. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71(4): 505-8.
[http://dx.doi.org/10.1001/jamaneurol.2013.5847] [PMID: 24493463]
[31]
Pedersen NL, Miller BL, Wetherell JL, et al. Neuroimaging findings in twins discordant for Alzheimer’s disease. Dement Geriatr Cogn Disord 1999; 10(1): 51-8.
[http://dx.doi.org/10.1159/000017097] [PMID: 9844037]
[32]
Zahid AB, Mikheev A, Srivatsa N, Babb J, Samadani U, Rusinek H. Accelerated brain atrophy on serial computed tomography: Potential marker of the progression of Alzheimer’s disease. J Comput Assist Tomogr 2016; 40(5): 827.
[http://dx.doi.org/10.1097/RCT.0000000000000435] [PMID: 27224227]
[33]
Motara H, Olusoga T, Russell G, et al. Clinical impact and diagnostic accuracy of 2-[18F]-fluoro-2-deoxy-d-glucose positron-emission tomography/computed tomography (PET/CT) brain imaging in patients with cognitive impairment: A tertiary centre experience in the UK. Clin Radiol 2017; 72(1): 63-73.
[http://dx.doi.org/10.1016/j.crad.2016.08.003] [PMID: 27637430]
[34]
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 67-77.
[http://dx.doi.org/10.1038/nrneurol.2009.215] [PMID: 20139996]
[35]
Förster S, Grimmer T, Miederer I, et al. Regional expansion of hypometabolism in Alzheimer’s disease follows amyloid deposition with temporal delay. Biol Psychiatry 2012; 71(9): 792-7.
[http://dx.doi.org/10.1016/j.biopsych.2011.04.023] [PMID: 21679929]
[36]
Chen W, Song X, Beyea S, D’Arcy R, Zhang Y, Rockwood K. Advances in perfusion magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 2011; 7(2): 185-96.
[http://dx.doi.org/10.1016/j.jalz.2010.04.004] [PMID: 21074500]
[37]
Maas LC, Harris GJ, Satlin A, English CD, Lewis RF, Renshaw PF. Regional cerebral blood volume measured by dynamic susceptibility contrast MR imaging in Alzheimer’s disease: A principal components analysis. J Magn Reson Imaging 1997; 7(1): 215-9.
[http://dx.doi.org/10.1002/jmri.1880070133] [PMID: 9039618]
[38]
Karas G, Scheltens P, Rombouts S, et al. Precuneus atrophy in early-onset Alzheimer’s disease: A morphometric structural MRI study. Neuroradiology 2007; 49(12): 967-76.
[http://dx.doi.org/10.1007/s00234-007-0269-2] [PMID: 17955233]
[39]
Chételat G, Landeau B, Eustache F, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. Neuroimage 2005; 27(4): 934-46.
[http://dx.doi.org/10.1016/j.neuroimage.2005.05.015] [PMID: 15979341]
[40]
Johnson NA, Jahng G-H, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology 2005; 234(3): 851-9.
[http://dx.doi.org/10.1148/radiol.2343040197] [PMID: 15734937]
[41]
Courtney SM, Ungerleider LG, Keil K, Haxby JV. Transient and sustained activity in a distributed neural system for human working memory. Nature 1997; 386(6625): 608-11.
[http://dx.doi.org/10.1038/386608a0] [PMID: 9121584]
[42]
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: A look to the future. Radiology 2003; 226(2): 315-36.
[http://dx.doi.org/10.1148/radiol.2262011600] [PMID: 12563122]
[43]
Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000; 343(7): 450-6.
[http://dx.doi.org/10.1056/NEJM200008173430701] [PMID: 10944562]
[44]
Small SA, Nava AS, Perera GM, Delapaz R, Stern Y. Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer’s disease and aging. Microsc Res Tech 2000; 51(1): 101-8.
[http://dx.doi.org/10.1002/1097-0029(20001001)51:1<101:AID-JEMT11>3.0.CO;2-H] [PMID: 11002358]
[45]
Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: Comparison of normal aging and alzheimer disease. Neuroimage 2000; 11(3): 179-87.
[http://dx.doi.org/10.1006/nimg.1999.0530] [PMID: 10694460]
[46]
Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 2011; 32(5): 802-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.05.002] [PMID: 19501936]
[47]
Shonk TK, Moats RA, Gifford P, et al. Probable Alzheimer disease: Diagnosis with proton MR spectroscopy. Radiology 1995; 195(1): 65-72.
[http://dx.doi.org/10.1148/radiology.195.1.7892497] [PMID: 7892497]
[48]
Doraiswamy PM, Charles HC. Brain magnetic resonance spectroscopy. CNS Drugs 2000; 14(6): 457-72.
[http://dx.doi.org/10.2165/00023210-200014060-00004]
[49]
Mathis CA, Klunk WE, Price JC, DeKosky ST. Imaging technology for neurodegenerative diseases: Progress toward detection of specific pathologies. Arch Neurol 2005; 62(2): 196-200.
[http://dx.doi.org/10.1001/archneur.62.2.196] [PMID: 15710847]
[50]
Pike VW. PET radiotracers: Crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 2009; 30(8): 431-40.
[http://dx.doi.org/10.1016/j.tips.2009.05.005] [PMID: 19616318]
[51]
Landau SM, Thomas BA, Thurfjell L, et al. Amyloid PET imaging in Alzheimer’s disease: A comparison of three radiotracers. Eur J Nucl Med Mol Imaging 2014; 41(7): 1398-407.
[http://dx.doi.org/10.1007/s00259-014-2753-3] [PMID: 24647577]
[52]
Lockhart A, Lamb JR, Osredkar T, et al. PIB is a non-specific imaging marker of amyloid-β (Abeta) peptide-related cerebral amyloidosis. Brain 2007; 130(Pt 10): 2607-15.
[http://dx.doi.org/10.1093/brain/awm191] [PMID: 17698496]
[53]
Rowe CC, Villemagne VL. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin North Am 2013; 97(3): 377-98.
[http://dx.doi.org/10.1016/j.mcna.2012.12.017] [PMID: 23642577]
[54]
Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: Comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry 2012; 83(9): 923-6.
[http://dx.doi.org/10.1136/jnnp-2012-302548] [PMID: 22791901]
[55]
Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial. Ann Neurol 2010; 68(3): 319-29.
[http://dx.doi.org/10.1002/ana.22068] [PMID: 20687209]
[56]
Silverman DHS, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA 2001; 286(17): 2120-7.
[http://dx.doi.org/10.1001/jama.286.17.2120] [PMID: 11694153]
[57]
Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 2013; 34(2): 457-68.
[http://dx.doi.org/10.3233/JAD-122059] [PMID: 23234879]
[58]
Marquié M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 2015; 78(5): 787-800.
[http://dx.doi.org/10.1002/ana.24517] [PMID: 26344059]
[59]
Mattsson N, Smith R, Strandberg O, et al. Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 2018; 90(5): e388-95.
[http://dx.doi.org/10.1212/WNL.0000000000004887] [PMID: 29321235]
[60]
Sanabria-Diaz G, Martínez-Montes E, Melie-Garcia L. Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLoS One 2013; 8(7)e68860
[http://dx.doi.org/10.1371/journal.pone.0068860] [PMID: 23894356]
[61]
Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 1985; 82(17): 6010-3.
[http://dx.doi.org/10.1073/pnas.82.17.6010] [PMID: 3862113]
[62]
Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis 2011; 26(4): 627-45.
[http://dx.doi.org/10.3233/JAD-2011-110458] [PMID: 21694448]
[63]
Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin Transl Imaging 2013; 1(4): 217-33.
[http://dx.doi.org/10.1007/s40336-013-0026-y] [PMID: 24409422]
[64]
Drzezga A, Becker JA, Van Dijk KRA, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 2011; 134(Pt 6): 1635-46.
[http://dx.doi.org/10.1093/brain/awr066] [PMID: 21490054]
[65]
Padovani A, Benussi A, Cantoni V, et al. Diagnosis of mild cognitive impairment due to Alzheimer’s disease with transcranial magnetic stimulation. J Alzheimers Dis 2018; 65(1): 221-30.
[http://dx.doi.org/10.3233/JAD-180293] [PMID: 30010131]
[66]
Hansson O, Zetterberg H, Vanmechelen E, et al. Evaluation of plasma Abeta(40) and Abeta(42) as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol Aging 2010; 31(3): 357-67.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.03.027] [PMID: 18486992]
[67]
Molinuevo JL, Blennow K, Dubois B, et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: A consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 2014; 10(6): 808-17.
[http://dx.doi.org/10.1016/j.jalz.2014.03.003] [PMID: 25150736]
[68]
Andreasen N, Sjögren M, Blennow K. CSF markers for Alzheimer’s disease: Total tau, phospho-tau and Abeta42. World J Biol Psychiatry 2003; 4(4): 147-55.
[http://dx.doi.org/10.1080/15622970310029912] [PMID: 14608585]
[69]
Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 2002; 59(9): 1381-9.
[http://dx.doi.org/10.1001/archneur.59.9.1381] [PMID: 12223024]
[70]
Tarawneh R, D’Angelo G, Crimmins D, et al. Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurol 2016; 73(5): 561-71.
[http://dx.doi.org/10.1001/jamaneurol.2016.0086] [PMID: 27018940]
[71]
Song MS, Mook-Jung I, Lee HJ, Min JY, Park MH. Serum anti-amyloid-β antibodies and Alzheimer’s disease in elderly Korean patients. J Int Med Res 2007; 35(3): 301-6.
[http://dx.doi.org/10.1177/147323000703500303] [PMID: 17593857]
[72]
Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid β proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 2000; 57(1): 100-5.
[http://dx.doi.org/10.1001/archneur.57.1.100] [PMID: 10634455]
[73]
Johnston JA, Liu WW, Coulson DTR, et al. Platelet β-secretase activity is increased in Alzheimer’s disease. Neurobiol Aging 2008; 29(5): 661-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.11.003] [PMID: 17174011]
[74]
Schedin-Weiss S, Inoue M, Hromadkova L, et al. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther 2017; 9(1): 57.
[http://dx.doi.org/10.1186/s13195-017-0279-1] [PMID: 28764767]
[75]
Gaiottino J, Norgren N, Dobson R, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 2013; 8(9)e75091
[http://dx.doi.org/10.1371/journal.pone.0075091] [PMID: 24073237]
[76]
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 2019; 90(8): 870-81.
[http://dx.doi.org/10.1136/jnnp-2018-320106] [PMID: 30967444]
[77]
Kienzl E, Jellinger K, Janetzky B, Steindl H, Bergmann J. A Broader Horizon of Alzheimer Pathogenesis: ALZAS-an Early Serum Biomarker?Ageing and Dementia Current and Future Concepts. Springer 2002; pp. 87-95.
[http://dx.doi.org/10.1007/978-3-7091-6139-5_9]
[78]
Marksteiner J, Hinterhuber H, Humpel C. Cerebrospinal fluid biomarkers for diagnosis of Alzheimer’s disease: Beta-amyloid(1-42), tau, phospho-tau-181 and total protein. Drugs Today (Barc) 2007; 43(6): 423-31.
[http://dx.doi.org/10.1358/dot.2007.43.6.1067341] [PMID: 17612711]
[79]
Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010; 6(3): 131-44.
[http://dx.doi.org/10.1038/nrneurol.2010.4] [PMID: 20157306]
[80]
Chen Q, He Z, Mao F, Pei H, Cao H, Liu X. Diagnostic technologies for COVID-19: A review. RSC Advances 2020; 10(58): 35257-64.
[http://dx.doi.org/10.1039/D0RA06445A]
[81]
Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020; 14(4): 3822-35.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[82]
Choi JR. Development of point-of-care biosensors for COVID-19. Front Chem 2020; 8: 517.
[http://dx.doi.org/10.3389/fchem.2020.00517] [PMID: 32574316]
[83]
Bernheim A, Mei X, Huang M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection. Radiology 2020; 295(3)200463
[http://dx.doi.org/10.1148/radiol.2020200463] [PMID: 32077789]
[84]
Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020; 295(1): 202-7.
[http://dx.doi.org/10.1148/radiol.2020200230] [PMID: 32017661]
[85]
Fang Y, Zhang H, Xie J, et al. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020; 296(2): E115-7.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[86]
Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2017; 10(1): 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[87]
Huang C, Wen T, Shi F-J, Zeng X-Y, Jiao Y-J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 2020; 5(21): 12550-6.
[http://dx.doi.org/10.1021/acsomega.0c01554] [PMID: 32542208]
[88]
Huang L, Jin J, Wang J, et al. Homogeneous and high-density gold unit implanted optical labels for robust and sensitive point-of-care drug detection. Nanoscale 2019; 11(34): 16026-35.
[http://dx.doi.org/10.1039/C9NR03740C] [PMID: 31432057]
[89]
Lou B, Li T-D, Zheng S-F, et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. Eur Respir J 2020; 56(2)2000763
[http://dx.doi.org/10.1183/13993003.00763-2020] [PMID: 32430429]
[90]
Guo X, Guo Z, Duan C, et al. Long-term persistence of IgG antibodies in SARS-CoV infected healthcare workers. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.12.20021386]
[91]
Agnello L, Piccoli T, Vidali M, et al. Diagnostic accuracy of cerebrospinal fluid biomarkers measured by chemiluminescent enzyme immunoassay for Alzheimer disease diagnosis. Scand J Clin Lab Invest 2020; 80(4): 313-7.
[http://dx.doi.org/10.1080/00365513.2020.1740939] [PMID: 32255379]
[92]
Bisoffi Z, Pomari E, Deiana M, et al. Sensitivity, specificity and predictive values of molecular and serological tests for COVID-19: A longitudinal study in emergency room. Diagnostics (Basel) 2020; 10(9): 669.
[http://dx.doi.org/10.3390/diagnostics10090669] [PMID: 32899333]
[93]
Kumari P, Singh A, Ngasainao MR, et al. Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta 2020; 510: 488-97.
[http://dx.doi.org/10.1016/j.cca.2020.08.013] [PMID: 32795547]
[94]
Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med 2020; 173(4): 262-7.
[http://dx.doi.org/10.7326/M20-1495] [PMID: 32422057]
[95]
Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J Microbiol 2015; 53(1): 1-5.
[http://dx.doi.org/10.1007/s12275-015-4656-9] [PMID: 25557475]
[96]
Huang WE, Lim B, Hsu CC, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol 2020; 13(4): 950-61.
[http://dx.doi.org/10.1111/1751-7915.13586] [PMID: 32333644]
[97]
Yu L, Wu S, Hao X, et al. Rapid detection of COVID-19 coronavirus using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) diagnostic platform. Clin Chem 2020; 66(7): 975-7.
[http://dx.doi.org/10.1093/clinchem/hvaa102] [PMID: 32315390]
[98]
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37: 67-78.
[http://dx.doi.org/10.1016/j.mib.2017.05.008] [PMID: 28605718]
[99]
Sternberg SH, Richter H, Charpentier E, Qimron U. Adaptation in CRISPR-Cas systems. Mol Cell 2016; 61(6): 797-808.
[http://dx.doi.org/10.1016/j.molcel.2016.01.030] [PMID: 26949040]
[100]
Zhang F, Abudayyeh OO, Gootenberg JS. Protocol for detection of COVID-19 using CRISPR diagnostics. A Protoc Detect COVID-19 using Cris diagnostics 2020; 8
[101]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[102]
Zhang J, Kasciukovic T, White MF. The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS One 2012; 7(10)e47232
[http://dx.doi.org/10.1371/journal.pone.0047232] [PMID: 23056615]
[103]
Myhrvold C, Freije C A, Gootenberg J S, et al. Fielddeployable viral diagnostics using CRISPR-Cas13. Science (80- ) 2018; 360(6387): 444-8.
[104]
Keightley MC, Sillekens P, Schippers W, Rinaldo C, George KS. Real-time NASBA detection of SARS-associated coronavirus and comparison with real-time reverse transcription-PCR. J Med Virol 2005; 77(4): 602-8.
[http://dx.doi.org/10.1002/jmv.20498] [PMID: 16254971]
[105]
Shan D, Johnson JM, Fernandes SC, et al. SARS-coronavirus-2 nucleocapsid protein measured in blood using a simoa ultra-sensitive immunoassay differentiates COVID-19 infection with high clinical sensitivity. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.14.20175356]
[106]
Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[107]
Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem 2020; 92(10): 7226-31.
[http://dx.doi.org/10.1021/acs.analchem.0c00784] [PMID: 32323974]
[108]
Djaileb A, Charron B, Jodaylami MH, et al. A rapid and quantitative serum test for SARS-CoV-2 antibodies with portable surface plasmon resonance sensing. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12118914.v1]
[109]
Mahari S, Roberts A, Shahdeo D, Gandhi S. ECovsens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of NCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.24.059204]
[110]
Vadlamani BS, Uppal T, Verma SC, Misra M. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors (Basel) 2020; 20(20): 5871.
[http://dx.doi.org/10.3390/s20205871] [PMID: 33080785]
[111]
Quanterix. Simoa Semi-Quantitative SARSCoV-2 IgG Antibody Test. Available from: https://www.fda. gov/media/144764/downloadAccessed on Aug 3, 2021.
[112]
Hanes J, Kovac A, Kvartsberg H, et al. Evaluation of a novel immunoassay to detect p-tau Thr217 in the CSF to distinguish Alzheimer disease from other dementias. Neurology 2020; 95(22): e3026-35.
[http://dx.doi.org/10.1212/WNL.0000000000010814] [PMID: 32973122]
[113]
Li D, Mielke MM. An update on blood-based markers of Alzheimer’s disease using the SiMoA platform. Neurol Ther 2019; 8(2)(Suppl. 2): 73-82.
[http://dx.doi.org/10.1007/s40120-019-00164-5] [PMID: 31833025]
[114]
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 2020; 19(5): 422-33.
[http://dx.doi.org/10.1016/S1474-4422(20)30071-5] [PMID: 32333900]
[115]
Glenner GG, Wong CW. Alzheimer’s amyloid polypeptide - used for obtaining antibodies and nucleotide probes for diagnosis of alzheimer’s disease. US Patent US4666829-A, 1987.
[116]
Basi G, Schenk DB, Feinberg HH, Weis WI. New hybrid amyloid-beta antibody, useful for treating and preventing Alzheimer’s disease, Down’s syndrome or mild cognitive impairment. US Patent 9067981-B1 2015.
[117]
Ponte PA, Cordell B. DNA sequence useful for detection of Alzheimer’s disease - for encoding beta amyloid core protein. US Patent US5220013-A 1993.
[118]
Martiskainen H, Takalo M, Solomon A, et al. Decreased plasma C-reactive protein levels in APOE ε4 allele carriers. Ann Clin Transl Neurol 2018; 5(10): 1229-40.
[http://dx.doi.org/10.1002/acn3.639] [PMID: 30349858]
[119]
Zeman T, Balcar VJ, Cahová K, et al. Polymorphism Rs11867353 of tyrosine kinase non-receptor 1 (TNK1) gene is a novel genetic marker for Alzheimer’s disease. Mol Neurobiol 2021; 58(3): 996-1005.
[PMID: 33070267]
[120]
Suzuki N, Odaka A, Kitada C, Otaka A. Antibodies recognising specific parts of beta-amyloid - can be used for diagnosis of diseases implicating betaamyloid, such as Alzheimer’s disease. WO Patent 9417197-A1, 1994.
[121]
Imbimbo BP, Lucca U, Watling M. Can Anti-β-amyloid monoclonal antibodies work in autosomal dominant Alzheimer disease? Neurol Genet 2020; 7(1)e535
[http://dx.doi.org/10.1212/NXG.0000000000000535] [PMID: 33575481]
[122]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[123]
St George-Hyslop PH, Fraser PE, Rommens JM. Presenilin- interacting protein genes - used to develop products for the diagnosis, therapy and study of Alzheimer’s disease and related disorders. WO Patent 9727296-A1, 1997.
[124]
Wang XZ, Du J, Xiao NN, et al. Driving force to detect Alzheimer’s disease biomarkers: Application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst (Lond) 2020; 145(13): 4646-63.
[http://dx.doi.org/10.1039/D0AN00440E] [PMID: 32458857]
[125]
Klunk WE, Pettergrew JW, Mathis CA. New alkyl, alkenyl, and alkynyl chrysamine G derivatives - used for in vivo imaging of amyloid deposits and diagnosis and treatment of Alzheimer’s disease, etc. WO Patent 9847969-A1 1999.
[126]
Kim HM, Cho BR. Small-molecule two-photon probes for bioimaging applications. Chem Rev 2015; 115(11): 5014-55.
[http://dx.doi.org/10.1021/cr5004425] [PMID: 25938620]
[127]
Hillen H, Striebinger A, Krantz C, et al. New oligomers of beta-amyloid1-42 peptide, useful for diagnosis of disease, e.g. Alzheimer’s, in screening for specific ligands and for generating antibodies for therapeutic or diagnostic use. DE Patent 10303974-A1 2004.
[128]
Sung W-H, Hung J-T, Lu Y-J, Cheng C-M. Paper-based detection device for Alzheimer’s disease-detecting β-amyloid Peptides (1-42) in human plasma. Diagnostics (Basel) 2020; 10(5): 272.
[http://dx.doi.org/10.3390/diagnostics10050272] [PMID: 32365918]
[129]
Kidd D, Streffer JR, Streffer J. Assisting in diagnosis, prognosis or monitoring of Alzheimer’s disease or susceptibility to AD, comprises measuring an amount of monomeric amyloid beta in a test sample. U.S. patent and trademark office. WO Patent 2013138512- A1, 2013.
[130]
Covannon E, Fedorovskaya EA, Wolcott RD, Endrik Hovski S, Marcus MA. Health care optometric kiosk for e.g. diagnosing Alzheimer`s disease in patient, has eye examination and information processing section examining user`s eyes by aligning eyes to examination module. WO Patent US2006290885-A1 2007.
[131]
Lee CS, Larson EB, Gibbons LE, et al. Associations between recent and established ophthalmic conditions and risk of Alzheimer’s disease. Alzheimers Dement 2019; 15(1): 34-41.
[http://dx.doi.org/10.1016/j.jalz.2018.06.2856] [PMID: 30098888]
[132]
Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 2000; 14(7): 835-46.
[http://dx.doi.org/10.1096/fasebj.14.7.835] [PMID: 10783137]
[133]
Szardenings AK, Zhang W, Kolb HC, et al. New tricyclic compounds useful as imaging agents for detecting neurological disorders or preclinical diagnosis and for tracking progression of Alzheimer’s disease. US Patent 2011182812-A1, 2011.
[134]
Wei H, Zhang HL, Wang XC, et al. Direct activation of Protein Phosphatase 2A (PP2A) by tricyclic sulfonamides ameliorates Alzheimer’s disease pathogenesis in cell and animal models. Neurotherapeutics 2020; 17(3): 1087-103.
[http://dx.doi.org/10.1007/s13311-020-00841-6] [PMID: 32096091]
[135]
Moechars DWE, Rombouts FJR, Leenaerts JE. New Substituted 6-fluoro-N-pyridin-4-Yl-1,5- naphthyridin-2-amine compounds are tau binders, used to bind and image tau aggregates in patient suffering from tauopathy. WO Patent 2017134098-A1 2017.
[136]
Meier IB, Gossens C, Lindermann M, et al. Diagnostic device for assessing one or more pre-clinical signs and/or symptoms of Alzheimer s disease in a subject comprises at least one processor, one or more sensors, and memory storing computer-readable instructions. WO Patent 2017134098-A1 2017.
[137]
Hyman BT, Trojanowski JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 1997; 56(10): 1095-7.
[http://dx.doi.org/10.1097/00005072-199710000-00002] [PMID: 9329452]
[138]
Chen Y, Yan W, Chen L, et al. Colloidal gold immunochromatography device useful for joint detection of coronavirus disease (COVID)-19 antigen and antibody, comprises COVID-19 antigen detection test strip and COVID-19 antibody detection test strip. CN Patent 111024954-A 2020.
[139]
Shchebliakov D V, Esmagambetow I B, Logunov D I, et al. Method for producing chinese hamster ovary cell strain, being a producer of recombinant SARSCoV- 2 virus protein RBD. RU Patent 2723008C1, 2020.
[140]
Liu H, Fang K, Zhu F, Yang Q, Shi L, Liu D. Preparing recombinant novel coronavirus COVID-19S protein as main diagnostic reagent component, involves constructing nucleotide sequence of codon-optimized COVID-19S protein into yeast cell inducible expression vector. CN Patent 111718951A, 2020.
[141]
Yan S, Zhu L. New coronavirus SARS-CoV-2 nucleic acid detection kit comprising e.g. coronavirus SARS-CoV-2 nucleic acid visual detection primer set, reverse transcription-loop-mediated isothermal amplification reaction. CN Patent 111378784-A, 2020.
[142]
Liu B, Shen H, Hao Y, et al. Lanthanide functionalized metal-organic coordination polymer: Toward novel turn-on fluorescent sensing of amyloid β-peptide. Anal Chem 2018; 90(21): 12449-55.
[http://dx.doi.org/10.1021/acs.analchem.8b01546] [PMID: 30110150]
[143]
Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019; 93(17): e1647-59.
[http://dx.doi.org/10.1212/WNL.0000000000008081] [PMID: 31371569]
[144]
Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol 2019; 76(5): 598-606.
[http://dx.doi.org/10.1001/jamaneurol.2018.4666] [PMID: 30830207]
[145]
Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol 2017; 74(9): 1073-80.
[http://dx.doi.org/10.1001/jamaneurol.2017.1359] [PMID: 28692710]
[146]
Dreger M, Steinbach R, Gaur N, et al. Cerebrospinal fluid Neurofilament Light Chain (NfL) predicts disease aggressiveness in amyotrophic lateral sclerosis: An application of the d50 disease progression model. Front Neurosci 2021.15651651
[http://dx.doi.org/10.3389/fnins.2021.651651] [PMID: 33889072]
[147]
Schmitz TW, Soreq H, Poirier J, Spreng RN. Longitudinal basal forebrain degeneration interacts with TREM2/C3 biomarkers of inflammation in presymptomatic Alzheimer’s disease. J Neurosci 2020; 40(9): 1931-42.
[http://dx.doi.org/10.1523/JNEUROSCI.1184-19.2019] [PMID: 31915256]
[148]
Al-Khuzaie FEK, Bayat O, Duru AD. Diagnosis of Alzheimer disease using 2D MRI slices by convolutional neural network. Appl Bionics Biomech 2021.
[149]
Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 2013; 8(7)e69807
[http://dx.doi.org/10.1371/journal.pone.0069807] [PMID: 23922807]
[150]
Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-based biomarkers in Alzheimer’s Disease (AD). Front Neurosci 2020.14585432
[http://dx.doi.org/10.3389/fnins.2020.585432] [PMID: 33192270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy