Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Mini-Review Article

Potential Polymorphic CYP1A2 and CYP2D6-mediated Pharmacokinetic Interactions between Risperidone or Olanzapine and Selected Drugs Intended to Treat COVID-19

Author(s): Ariana Rojas-Macetas, Geraldine Medalla-Garro, María Saravia, Ricardo Losno, Milton Valderrama-Wong, Ricardo Pariona and Angel Tito Alvarado Yarasca*

Volume 16, Issue 1, 2023

Published on: 06 January, 2023

Page: [6 - 13] Pages: 8

DOI: 10.2174/1872312815666221125112724

Price: $65

Abstract

Risperidone/olanzapine are antipsychotics used in Peru to control symptoms of psychosis. The objective was to review the available evidence on potential pharmacokinetic interactions mediated by CYP1A2 and CYP2D6 polymorphic genes between risperidone or olanzapine and selected drugs for the treatment of COVID-19. A bibliographic search was conducted in SciELO and PubMed/Medline. The selection criteria included all types of articles in English and Spanish languages. In this review, the CYP1A2/CYP2D6/CYP3A4 genes that encode their respective enzymes have been described. The olanzapine/risperidone association increases the risk of prolonging the QT interval; chloroquine/hydroxychloroquine decreases metabolism and increases plasma concentration of risperidone; ritonavir decreases metabolism and increases plasma levels of hydroxychloroquine and lopinavir with the risk of prolonging the QT interval of the cardiac cycle and with a tendency to progression towards Torsades de Pointes. Ritonavir increases metabolism and decreases plasma levels of olanzapine. A low incidence of adverse effect was found between risperidone/azithromycin and olanzapine with azithromycin and hydroxychloroquine. Regarding the association of genes: CYP1A2*1D increases and CYP1A2*1F decreases the plasma concentration of olanzapine. Risperidone plasma levels are increased in CYP2D6 intermediate and poor metabolizers compared with normal metabolizers. Other studies indicate no significant association between poor metabolizers of CYP1A2 and CYP2D6 with increased pharmacokinetic parameters. It is concluded that there are potential risks of prolonging the QT interval due to pharmacokinetic interactions mediated by polymorphic genes CYP1A2 and CYP2D6 between risperidone or olanzapine and the drugs selected for the treatment of COVID-19.

Keywords: CYP1A2, CYP2D6, pharmacokinetic interactions, depression, risperidone/olanzapine, azithromycin, hydroxylchloroquine.

Graphical Abstract
[1]
Vogel, M.M.I.; León, F.; Torres, R.; Crossley, N.A. Antipsicóticos de primera y segunda generación en esquizofrenia: eficacia, efectividad y efecto de la dosis utilizada. ARS MEDICA Revista de Ciencias Médicas, 2017, 42(1), 41-48.
[http://dx.doi.org/10.11565/arsmed.v42i1.452]
[2]
Ostinelli, E.G.; Hussein, M.; Ahmed, U.; Rehman, F.; Miramontes, K.; Adams, C.E. Risperidone for psychosis-induced aggression or agitation (rapid tranquillisation). Cochrane Database Syst. Rev., 2018, 4(4), CD009412.
[http://dx.doi.org/10.1002/14651858.CD009412.pub2]
[3]
Chiang, C.L.; Chen, P.C.; Huang, L.Y.; Kuo, P.H.; Tung, Y.C.; Liu, C.C.; Chen, W.J. Time trends in first admission rates for schizophrenia and other psychotic disorders in Taiwan, 1998-2007: A 10-year population-based cohort study. Soc. Psychiatry Psychiatr. Epidemiol., 2017, 52(2), 163-173.
[http://dx.doi.org/10.1007/s00127-016-1326-0] [PMID: 28028581]
[4]
Liu, X.; Sun, H.; Zhang, Y.; Sun, Y.; Wang, W.; Xu, L.; Liu, W. Clozapine affects the pharmacokinetics of risperidone and inhibits its metabolism and P-glycoprotein–mediated transport in vivo and in vitro: A safety attention to antipsychotic polypharmacy with clozapine and risperidone. Toxicol. Appl. Pharmacol., 2021, 422, 115560.
[http://dx.doi.org/10.1016/j.taap.2021.115560] [PMID: 33957192]
[5]
Plasencia-García, B.O.; Rodríguez-Menéndez, G.; Rico-Rangel, M.I.; Rubio-García, A.; Torelló-Iserte, J.; Crespo-Facorro, B. Drug-drug interactions between COVID-19 treatments and antipsychotics drugs: integrated evidence from 4 databases and a systematic review. Psychopharmacology (Berl.), 2021, 238(2), 329-340.
[http://dx.doi.org/10.1007/s00213-020-05716-4] [PMID: 33410987]
[6]
Valle, R. Variability of costs of antipsychotics according to pharmaceutical establishments in Lima, Peru. Rev. Peru. Med. Exp. Salud Publica, 2020, 37(1), 67-73.
[http://dx.doi.org/10.17843/rpmesp.2020.371.4899] [PMID: 32520195]
[7]
Hodgkin, D.; Piazza, M.; Crisante, M.; Gallo, C.; Fiestas, F. Availability of psychotropic medications in health care facilities of the Ministry of Health of Peru, 2011. Rev. Peru. Med. Exp. Salud Publica, 2014, 31(4), 660-668.
[PMID: 25597715]
[8]
Flores-Rojas, L.E.; González-Zúñiga, L.A. Efectos secundarios metabólicos de los antipsicóticos de segunda generación. Medicina Interna de México, 2019, 35(5), 721-731.
[http://dx.doi.org/10.24245/mim.v35i5.2658]
[9]
Kneller, L.A.; Abad-Santos, F.; Hempel, G. Physiologically based pharmacokinetic modelling to describe the pharmacokinetics of risperidone and 9-hydroxyrisperidone according to cytochrome P450 2D6 phenotypes. Clin. Pharmacokinet., 2020, 59(1), 51-65.
[http://dx.doi.org/10.1007/s40262-019-00793-x] [PMID: 31359271]
[10]
Alvarado, A.T.; Muñoz, A.M.; Loja, B.; Miyasato, J.M.; García, J.A.; Cerro, R.A.; Quiñones, L.A.; Varela, N.M. Study of the allelic variants CYP2C9*2 and CYP2C9*3 in samples of the Peruvian mestizo population. Biomédica, 2019, 39(3), 601-610.
[http://dx.doi.org/10.7705/biomedica.4636] [PMID: 31584773]
[11]
Catalán, J.; Garay, J.; Romero, F.; Miranda, C.; Roco, A.; Quiñones, L.; Saavedra, I. Metabolismo de los antipsicóticos: Enzimas y genes relacionados. Rev. Farmacol. Chile., 2011, 4(1), 15-20.
[12]
Soria-Chacartegui, P.; Villapalos-García, G.; Zubiaur, P.; Abad-Santos, F.; Koller, D. Genetic polymorphisms associated with the pharmacokinetics, pharmacodynamics and adverse effects of olanzapine, aripiprazole and risperidone. Front. Pharmacol., 2021, 12, 711940.
[http://dx.doi.org/10.3389/fphar.2021.711940] [PMID: 34335273]
[13]
Spina, E.; Barbieri, M.A.; Cicala, G.; de Leon, J. Clinically relevant interactions between atypical antipsychotics and anti-infective agents. Pharmaceuticals (Basel), 2020, 13(12), 439.
[http://dx.doi.org/10.3390/ph13120439] [PMID: 33276675]
[14]
Verdura Vizcaíno, E.J.; Ballesteros Sanz, D.; Sanz-Fuentenebro, J. Monitoring of plasma levels of atypical antipsychotics. Revista de la Asociación Española de Neuropsiquiatría, 2012, 32(115), 499-519.
[http://dx.doi.org/10.4321/S0211-57352012000300005]
[15]
Penzak, S.R.; Hon, Y.Y.; Lawhorn, W.D.; Shirley, K.L.; Spratlin, V.; Jann, M.W. Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers. J. Clin. Psychopharmacol., 2002, 22(4), 366-370.
[http://dx.doi.org/10.1097/00004714-200208000-00006] [PMID: 12172335]
[16]
Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 2009, 41(2), 89-295.
[http://dx.doi.org/10.1080/03602530902843483] [PMID: 19514967]
[17]
Nordmark, A.; Lundgren, S.; Ask, B.; Granath, F.; Rane, A. The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women. Br. J. Clin. Pharmacol., 2002, 54(5), 504-510.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01673.x] [PMID: 12445029]
[18]
Al-Ahmad, M.M.; Amir, N.; Dhanasekaran, S.; John, A.; Abdulrazzaq, Y.M.; Ali, B.R.; Bastaki, S.M.A. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2) among Emiratis. PLoS One, 2017, 12(9), e0183424.
[http://dx.doi.org/10.1371/journal.pone.0183424] [PMID: 28934216]
[19]
Rodrigues, A.D. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem. Pharmacol., 1999, 57(5), 465-480.
[http://dx.doi.org/10.1016/S0006-2952(98)00268-8] [PMID: 9952310]
[20]
Zhou, X.Y.; Hu, X.X.; Wang, C.C.; Lu, X.R.; Chen, Z.; Liu, Q.; Hu, G.X.; Cai, J.P. Enzymatic activities of CYP3A4 allelic variants on quinine 3-hydroxylation in vitro. Front. Pharmacol., 2019, 10, 591.
[http://dx.doi.org/10.3389/fphar.2019.00591] [PMID: 31214030]
[21]
Alvarado, A.T.; Ybañez-Julca, R.; Muñoz, A.M.; Tejada-Bechi, C.; Cerro, R.; Quiñones, L.A.; Varela, N.; Alvarado, C.A.; Alvarado, E.; Bendezú, M.R.; García, J.A. Frequency of CYP2D6*3 and *4 and metabolizer phenotypes in three mestizo Peruvian populations. Pharmacia, 2021, 68(4), 891-898.
[http://dx.doi.org/10.3897/pharmacia.68.e75165]
[22]
ur Rasheed, M.S.; Mishra, A.K.; Singh, M.P. Cytochrome P450 2D6 and Parkinson’s disease: Polymorphism, metabolic role, risk and protection. Neurochem. Res., 2017, 42(12), 3353-3361.
[http://dx.doi.org/10.1007/s11064-017-2384-8] [PMID: 28871472]
[23]
Leitão, L.P.C.; Souza, T.P.; Rodrigues, J.C.G.; Fernandes, M.R.; Santos, S.; Santos, N.P.C. The metabolization profile of the CYP2D6 gene in Amerindian populations: A review. Genes (Basel), 2020, 11(3), 262.
[http://dx.doi.org/10.3390/genes11030262] [PMID: 32121156]
[24]
Cazzola, M.; Rogliani, P.; Calzetta, L.; Matera, M.G. Pharmacogenomic response of inhaled corticosteroids for the treatment of asthma: Considerations for therapy. Pharm. Genomics Pers. Med., 2020, 13, 261-271.
[http://dx.doi.org/10.2147/PGPM.S231471] [PMID: 32801837]
[25]
Bartra, S.M.; Losno, R.; Valderrama-Wong, M.; Muñoz, A.M.; Bendezú, M.; García, J.; Surco, F.; Basurto, P.; Pineda-Pérez, M.; Alvarado, A.T. Pharmacokinetic interactions of azithromycin and clinical implication. Rev. Cuba. Med. Mil., 2021, 50(3), e02101284.
[26]
Ministerial Resolution No. 270-2020-MINSA. Prevention, diagnosis and treatment of people affected by COVID-19. Available from: https://www.gob.pe/institucion/minsa/normas-legales/563764-270-2020-minsa (Accessed on: january 10, 2021).
[27]
Arríen, E.; Agüera, L.; Manzano, S. Pharmacological management of psychotic disorders in older people with treatment of COVID19 infection: interactions and therapeutic recommendations. Available from: https://www.fesemi.org/sites/default/files/documentos/19.pdf
[28]
Drug Interaction Report. Interactions between your drugs. Available from: https://www.drugs.com/interactions-check.php?drug_list=1298-0, 300-0
[29]
Jacobs, B.S.; Colbers, A.P.H.; Velthoven-Graafland, K.; Schouwen-berg, B.J.J.W.; Burger, D.M. Effect of fosamprenavir/ritonavir on the pharmacokinetics of single-dose olanzapine in healthy volunteers. Int. J. Antimicrob. Agents, 2014, 44(2), 173-177.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.03.014] [PMID: 24929949]
[30]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[31]
Mansuri, Z.; Adnan, M.; Jolly, T. Ritonavir/lopinavir and its potential interactions with psychiatric medications: A COVID-19 perspective. Primary Care Companion CNS Disord., 22(3), 20.
[http://dx.doi.org/10.4088/PCC.20com02677]
[32]
Ito, T.; Yamamoto, K.; Ohsawa, F.; Otsuka, I.; Hishimoto, A.; Sora, I.; Hirai, M.; Yano, I. Association of CYP2D6 polymorphisms and extrapyramidal symptoms in schizophrenia patients receiving risperidone: a retrospective study. J. Pharm. Health Care Sci., 2018, 4(1), 28.
[http://dx.doi.org/10.1186/s40780-018-0126-y] [PMID: 30479825]
[33]
Oshikoya, K.A.; Neely, K.M.; Carroll, R.J.; Aka, I.T.; Maxwell-Horn, A.C.; Roden, D.M.; Van Driest, S.L. CYP2D6 genotype and adverse events to risperidone in children and adolescents. Pediatr. Res., 2019, 85(5), 602-606.
[http://dx.doi.org/10.1038/s41390-019-0305-z] [PMID: 30661084]
[34]
Zhang, L.; Brown, S.J.; Shan, Y.; Lee, A.M.; Allen, J.D.; Eum, S.; Leon, J.; Bishop, J.R. CYP2D6 genetic polymorphisms and risperidone pharmacokinetics: A systematic review and meta-analysis. Pharmacotherapy, 2020, 40(7), 632-647.
[http://dx.doi.org/10.1002/phar.2434] [PMID: 32519344]
[35]
Rossow, K.M.; Oshikoya, K.A.; Aka, I.T.; Maxwell-Horn, A.C.; Roden, D.M.; Van Driest, S.L. Evidence for pharmacogenomic effects on risperidone outcomes in pediatrics. J. Dev. Behav. Pediatr., 2021, 42(3), 205-212.
[http://dx.doi.org/10.1097/DBP.0000000000000883] [PMID: 33759847]
[36]
Zubiaur, P.; Soria-Chacartegui, P.; Koller, D.; Navares-Gómez, M.; Ochoa, D.; Almenara, S.; Saiz-Rodríguez, M.; Mejía-Abril, G.; Villapalos-García, G.; Román, M.; Martín-Vílchez, S.; Abad-Santos, F. Impact of polymorphisms in transporter and metabolizing enzyme genes on olanzapine pharmacokinetics and safety in healthy volunteers. Biomed. Pharmacother., 2021, 133, 111087.
[http://dx.doi.org/10.1016/j.biopha.2020.111087] [PMID: 33378980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy