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Abstract

According to the World Health Organization, the num-

ber of people infected with Trypanosoma Cruzi is esti-

mated between 6 and 7 million, the causative agent of Cha-

gas disease, and in 550000 people exposed to the risk of

affectation. The approximate entropy was used to quantify

the regularity of the tachograms of patients with Chagas

disease. The study population consisted of three groups

of volunteers: 92 controls (C), 102 patients with positive

serology without cardiac involvement diagnosed by con-

ventional non-invasive methods (CH1) and 107 patients

with positive serology and mild to moderate incipient heart

failure (CH2). We analyzed RR segments of 5 minutes,

288 segments, corresponding to 24 hours per patient. We

found significant differences between the Control and CH2

groups, which is used to stratify risk in the CH1 group.

1. Introduction

Chagas disease is caused by a flagellated parasite: Try-

panosoma cruzi, transmitted by an insect of the genus Tri-

atoma and also by blood transfusions. In Latin America the

number of people infected is approximately 6 million, with

a population exposed to the risk of infection of 568,000[1].

In 40 % of the population infected with Trypanosoma cruzi

(T. cruzi) there is cardiac involvement [2, 3, 11]. These es-

timates explain why this disease is a serious public health

problem in the countries where it is endemic. In the evolu-

tion of Chagas disease we can distinguish an initial acute

phase of infection and a prolonged intermediate chronic

phase, in which the disease is often clinically silent, and

the usual diagnostic techniques do not provide a robust cri-

terion to predict whether a seropositive asymptomatic pa-

tient will suffer cardiac involvement. It is our interest to

develop a non-invasive methodology low cost, that allows

to see the dysautononia or dysfunction in the course of the

24 hours and with this it could be used to detect early any

cardiac alterations produced by the T. cruzi.

2. Database

We have used the Electrocardiogram (ECG) database

of the Institute of Tropical Meditation (IMT) of the Cen-

tral University of Venezuela. Tachograms were obtained

by processing the electrocardiogram (ECG) and obtaining

the RR interval. The following test is carried out: clini-

cal evaluation, serological Machado-Gerreiro test, chest x-

rays, echocardiogram, electrocardiogram and ambulatory

Holter registration (24 hours). The volunteers are clas-

sified into three groups: 92 healthy people called group

control C; 102 patients infected with only positive serol-

ogy ( clinical evaluation, chest x-rays, echocardiogram,

electrocardiogram and Holter were normal ) called CH1

group; and 107 seropositive patients with incipient cardiac

involvement first-degree atrioventricular block (BAV), si-

nus bradycardia (BS) or right bundle branch block of the

bundle of His (BRDHH), that were not being treated with

medications, called the CH2 group. All were outpatients,

and informed consent was obtained from all of them. The

ECG signals were recorded at 500 Hz with 12 bits of reso-

lution, a set of 288 frames of 5 minutes was obtained.

3. Method

3.1. Preprocessed

For the detection of the QRS complex the program based

on the Pan-Tomkipns algorithm[9] was used, then the 288

tachograms of the RRs of 5 minutes were generated. A

post processing based on an adaptive filtering procedure

and details in [10], was also carried out.

3.2. Feature extraction

The approximate entropy (ApEn) was developed by

Steve Pincus[4,5] is based on the entropy of Kolmogorov-

Sinai KS, proposed by Grassberger and Procaccia[6] and

modified by Takens[7]. A modification of ApEn was made

by Richman[8] which is the sample entropy (Sampen).

both of which measures the irregularity and complexity of
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a time series of data.

ApEn and SampEn are based on the comparisons of the

component-to-component embedding vectors (m = 2) and

with a threshold of 20% of the standard deviation of the

intervals RR (r = 0.20). The difference between the en-

tropies is that ApEn does not take into account the com-

parisons of the embedment vectors with itself and the way

to calculate the logarithm. To calculate ApEn:

ApEn(m, r,N) = −

1

N −m

N−m∑

i=1

log (
Ai

Bi

) (1)

where Bi are the vectors of embedding dimension m and

Ai are the vectors of dimension of embendding m + 1, r

is the threshold that is typically 20% of the value of the

standard deviation and N is the number of elements.

SampEn is calculated as:

SampEn(m, r,N) = − log(

∑
N−m

i=1
Ai∑

N−m

i=1
Bi

) = − log(
A

B
)

(2)

similar a ApEn m, r and N .

3.3. Testing samples

We will use the Kruskal Wallis test that matches the 288

frames corresponding to the Control-CH1, Control-CH2

and CH1-CH2 groups to test differences between groups.

Also a logistic regression is used to evaluate circadian pro-

files of the average values of ApEn, SampEn. Finally box-

plot representations are used to analyze a frame in special.

4. Results

4.1. Approximate Entropy (ApEn)

ApEn was calculated at 288 tachograms of 5 minutes

and 24-hour circadian profiles were obtained (Fig 1a).
• Between 00:00 hours and 06:00 the control group C has

slightly higher values than CH1, CH1 ApEn values are

slightly greater than CH2.

• Between 06:30 and 11:20 there is no greater differences

between the three groups.

• We noticed that between 11:20 and 21:30 there is a sus-

tained difference of group C

• At 14:30 it is the biggest difference between groups C

and CH2.
We have used the logistic regression to discriminate groups

C and CH2. For this task 50% of frames are selected ran-

domly (144) for training and 50specificity and 80% of sen-

sitivity between 14:00 h. and 15:40 h.

We applied the Kruskal-Wallis test where we can see in

figure 1b that around frame 175 (14:30 hours) pvalue <

0.05, for the groups: Control-CH1 and Control-CH2. This

not the case for CH1-CH2 as shown in the figure 1.
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Figure 1. a) ApEn values of the 24 hours (288 frames) b)

p-value of the groups: Control-CH1, Control-CH2, CH1-

CH2
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Figure 3. Boxplot frame 160 ApEn

4.2. Sample Entropy (SampEn)

We calculated the SampEn to the 288 segments of 5

minutes to the three groups and we obtain the average val-
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ues of the RR intervals. This can be seen in Fig 4a,
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Figure 4. a) SampEn values of the 24 hours (288 frames)

b) p-value of the groups: Control-CH1, Control-CH2,

CH1-CH2

• Between 00:00 hours and 08:30 the value of SampEn

there is no greater difference between the three groups.

The control group C has slightly higher values than CH1,

CH1 is slightly greater than CH2.

• Between 08:30 and 10:00 the groups CH1 and CH2 have

a higher value than group C.

• However, from 12:30 to 16:15 we observe that SamEn

values are higher in group C than groups CH1 and CH2

• At 14:10 it is the biggest difference between groups C

and CH2.
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Figure 5.

Now we will use the logistic classifier for groups C and

CH2, for this we will use 50% of frames at random (144)

for training and 50% for validation, with this it is possi-

ble to classify up to 80% of specificity of group C and

70% of sensitivity in the CH2 group between 14:00 h. at

15:40 h. We applied the Kruskal-Wallis test to the values of

SampEn to the groups: Control-CH1, Control-CH2, where

we noticed that around frame 175 the p-values lower than

0.05.

Now we will use the logistic regression classifier for

groups C and CH2, with this it is possible to reach 80%
of specificity and 70% of sensitivity between 14:00 h. at

15:40 h. We applied the Kruskal-Wallis test to the values of

SampEn to the groups: Control-CH1, Control-CH2, where

we noticed that around frame 175 p − values < 0.05. A

similar result is obtained with ApEn.
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Figure 6. Boxplot frame 160 SampEn

We analyze the segment 160 of the result of the SampEn

values that corresponds to the 13:30 hours, using the box-

plot. We noticed that it is possible to show the risk to the

CH1 group, just like ApEn.

5. Discussion and conclusions

The average ApEn values between 11:20 and 21:30

show (Fig. 1a) that group Control presents higher val-

ues than the values corresponding to group CH1 and CH2.

This could be due to a decrease or enervation in its baro-

metric response, this is also observed in SampEn (Fig 4a)

at shorter time intervals from 12:30 to 16:15.

The approximation entropy (ApEn) and the sampling

entropy (SampEn) measure the irregularity and the com-

plexity, when we apply these features to the circadian pro-

files of the Control, CH1 and CH2 groups, we observe that

in the afternoon hours the values of the Control group has

greater irregularity and complexity than the values of the

CH1 and CH2 groups that show decrease or enervation of

these groups, this could be used as a measure of the vari-

ability of the heart rate.

The logistic classifier and Kruskal-Wallis test allows us

to differentiate the both groups (control and CH2) both in

ApEn and SampEn in the afternoon hours (18 frames) ,

indicating that it can be used in the stratification of risk of

group CH1, therefore it is possible to use to classifier to

can be used in the stratify group CH1.

The logistic regression and the Kruskal-Wallis test allow
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us to differentiate both groups (control and CH2) both in

ApEn and in SampEn in the evening hours 2:35 pm (18

frames or 1:30 h), which can be used to stratify the CH1

group risk.

Acknowledgements

Virrectorado de Investigación de la Universidad Na-

cional San Agustin de Arequipa, contrato de subvención

16-2018-UNSA.

Conflicts of Interest

The authors declare no conflict of interest

References

[1] World Health Organization, The World Health Report, 2017,

2:75,9–16, http://www.who.int/wer

[2] Moleiro F. and I. Mendoza, Circulation, 1978, 113.

[3] Moleiro F, Mendoza I, Miocardiopatia Chagásica Crónica.

Estudio Epidemiológico, Acta Cient. Venez. 1980, 31:66

[4] Pincus S, Gladston I, A Regularity Statistic for Medical Data

Analisys, Journal of Clinical Monitoring October, 1991.

1980, Vol 7 No 4

[5] Pincus S Approximate entropy as a measure of system com-

plexity, Proc. Nati. Acad. Sci. USA, 1991, Vol. 88, 2297-

2301, Mathematics

[6] Grassberger P, Procaccia I. Estimation of the Kolmogorov

entropy from a chaotic signal, Phys Rev A 1983, 28:2591-

2593

[7] Takens S, Invariants related to dimension and entropy, In:

Atas do 13 Rio de Janeiro, Col. Brasiliero de Matematicas,

1983

[8] Richman J., Moorma J., Physiological time-series analysis

using approximate entropy and sample entropy, Am J Physiol

Heart Circ Physiol, 278: H2039H2049, 2000.

[9] Pan J. and Tompkins W., A Real-Time QRS Detection Al-

gorithm IEEE Transactions on Biomedical Engineering, Vol.

BME-32, NO. 3, March, 1985.

[10] Wessel, N., et.al., Nonlinear analysis of complex phenom-

ena in cardiological data, Herzschr. Elektrophys., 11(3),

2000, 159-173

[11] Hagar J. M. and Rahimtoola S. H., N. Eng. J. Med., 325,

763, 1991.

[12] Task Force of the European Society of Cardiology and the

North American Society of Pacing and Electrophysiology,

Circulation, 73, 5, 1044, 1996.

[13] Guzzetti S., et.al., Impaired heart rate variability in patients

with chronic Chagas’ disease., Am. Heart J. 1991, 121:1727

[14] Loyo J, et.al., DV:Effect of postural changes in the auto-

nomic balances in latent or indeterminate phase of Chagas

Disease, Chest 1995, 3:108

[15] Liebovitch L. S., et.al., Phys. Rev. E, 59, 3, 1999.

[16] Vizcardo M., et.al, Analysis of the heart rate variability and

stratification of the risk of cardiac patients with Chagas dis-

ease, Computers in Cardiology, 2007.

[17] Wales D. J., Calculating the rate of loss of information from

chaotic time series by forecasting, Nature 350, 485, 1991.

[18] Ravelo-Garca A. G., et.al. Symbolic dynamics marker of

heart rate variability combined with clinical variables en-

hance obstructive sleep apnea screening, Chaos 24, 024404,

2014.

[19] Campos Junqueira de Souza A. and et.a Development of a

risk score to predict sudden death in patients with Chaga’s

heart disease,l., International Journal of Cardiology 187,

2015, 700704
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