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Magnetocaloric properties in ribbon sample of Ni50.3Mn36.5Sn13.2 Heusler alloy are studied
by a direct method in cyclic magnetic fields. A strong anisotropy in the magnetocaloric
effect is observed in weak magnetic fields, obtaining a large value of MCE when the field
is applied parallel to the ribbon plane. The field dependence of the MCE anisotropy is
studied and its decrease is clearly revealed in moderate fields. It was found that in cyclic
magnetic fields, the MCE value near the magnetostructural phase transition depends on
the rate of temperature scanning: a higher rate of the temperature sweep results in greater
value of the MCE.
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1. Introduction
The interest in the study of materials with the magnetocaloric effect (MCE) is

due to the possibility of using them in prospective solid-state magnetic refrigeration
technologies. The search for materials with necessary magnetocaloric properties is
actually in progress by many research groups in the world [1; 2]. In recent years, much
attention is paid to the study of materials with coupled first-order magnetostructural
phase transitions (FOMPT). In this case, the total change of entropy is equal to ∆S =
∆Ss + ∆Sm where ∆Ss is the entropy change due to the structural transition and ∆Sm

is the magnetic entropy change. This can give rise to a giant MCE in these materials.
For instance, a giant MCE was observed in Ni-Mn-In-(Co) alloy, where the adiabatic
temperature change is more than 6 K for µ0∆H = 1.9 T [2]. But this and similar
studies are performed under conditions that significantly differ from those that will be
in magnetic refrigerators. In real refrigerators the magnetic material will be subjected to
an alternating magnetic field. To improve the efficiency of magnetic cooling, it is needed
to use alternating magnetic fields of a high frequency. The frequencies of thermomagnetic
cycles, in turn, are limited by the rate of the heat transfer in the material [3]. To increase
the rate of the heat transfer, therefore, it is necessary to increase the surface area of the
working body, which can be done by making it in the form of a battery of thin plates.
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However, strong anisotropy effects of MCE can occur in thin samples of alloys produced
by different technologies, for example by rapid cooling in the form of melt spun ribbons.
The effect of thermomagnetic relaxation processes on the magnetocaloric properties of
magnetic materials in alternating magnetic fields can also occur. Particularly, these
effects can be strong in the vicinity of the FOMPT. All these peculiarities should be
taken into account in designing the prototypes of magnetic refrigerators.

Heusler alloys Ni-Mn-X (X = Ga, In, Sn, Sb) are promising materials for their use
in magnetic refrigerators. First, in these alloys, large values of MCE at FOMPT are
observed [4–7]. Second, there is an established technology for producing high quality
ribbons (thickness is 10–20 microns) of these alloys, with rather high values of MCE
[8–11].

2. Results and Discussion

The aim of this paper is to study the anisotropy and time dependence of MCE in
ribbon samples of a Heusler alloy in alternative magnetic fields of low frequencies. The
use of a direct method is necessary for the correct estimation of the MCE value at
MSPT, since the use of indirect methods around first-order transitions can give untrue,
often overestimated values. For example, the giant MCE reported in [12–14] was not
further confirmed by direct measurements [15]. In addition, at present, except for the
direct method proposed by authors, there are no other methods to measure the MCE
in alternating magnetic fields [16]. The frequency of the cycles of the magnetic field
used in our experiments is less than 1 Hz, which is, of course, much lower than the
operating frequency of the prototypes of magnetic refrigerators, but such studies can
indicate trends in the behavior of the magnetocaloric effect at higher frequencies.

In the present work, the MCE is studied in melt-spun ribbon of Ni-Mn-Sn Heusler
alloys by direct technique, in a low (up to 4 kOe) and a moderate (18 kOe) magnetic
field by the modulation method [16]. The frequency of the alternating magnetic field in
the experiment was 0.3 Hz. The alternating magnetic field was applied to the sample
during the experiment. This method has been already tested on many material samples,
including Gd, manganites and Heusler alloys [16–19]. The specific heat was measured
by an ac-calorimetery technique. Samples with 1 × 3 × 0.015 mm3 dimensions were
cut from ribbons obtained by rapid quenching from the melt. Ribbons have a textured
microcrystalline structure, with elongated column grains perpendicularly oriented to the
ribbon plane [9].

According to the magnetization data (Fig. 1a) Curie point occurs at 311 K. FOMPT
begins at MS = 256 K, and ends at Mf = 252 K. Corresponding temperatures in the
austenite phase are AS = 275 K, and Af = 278 K, respectively. With further cooling, the
Ni50.3Mn36.5Sn13.2 undergoes a phase transition from low to high magnetization state in
the martensite phase. The application of a 20 kOe magnetic field shifts the temperature
of FOMPT to lower temperatures, and the temperature ferromagnetic-paramagnetic
transition to a higher one.

Fig. 1b shows the temperature dependence of the specific heat for Ni50.3Mn36.5Sn13.2

in a zero magnetic field and in the magnetic field of 18 kOe. High-temperature specific
heat anomaly displays a maximum at T = 312.5 K, corresponding to the ferromagnetic-
paramagnetic phase transition, which takes place in the austenite phase. At temperatures
of 250 K in cooling run and 273.5 K in heating one, a second anomaly in the specific
heat corresponding to the FOMPT is observed. The width of the hysteresis is about
16 K.
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Fig. 1. a) Magnetization M(T) of Ni50.3Mn36.5Sn13.2 in heating and cooling runs in magnetic fields
of 1 and 20 kOe; b) Specific heat of Ni50.3Mn36.5Sn13.2 at heating and cooling (zero-field)

and in a magnetic field (18 kOe) in heating run (red line)

To study the anisotropy of the MCE, measurements were performed in two
geometries: 1 — the ribbon plane being perpendicular to the magnetic field, and 2 — the
ribbon plane being parallel to the magnetic field. All other conditions were identical and
the same differential thermocouple was used in both experiments. Figure 2 shows the
temperature dependence of the adiabatic temperature change ∆Tad in Ni50.3Mn36.5Sn13.2

when H is applied parallel to the ribbon plane. There are a direct MCE due to the PM-
FM phase transition, and inverse MCE at FOMPT. Thermal hysteresis is observed
in the magnetostructural transition region. The maximum value of the direct effect
is equal to ∆Tad = 0.6 K. An abrupt change in sign of the MCE is observed at
magnetostructural phase transition, being the value of the inverse effect much smaller
than the corresponding to the direct one, either in heating and cooling runs. At a further
cooling of the martensite phase, again a direct magnetocaloric effect is observed, with a
maximum at T = 240 K. This effect is due to the transition to the ferromagnetic state
in the martensite phase.

It is known that usually thin

Fig. 2. MCE in Ni50.3Mn36.5Sn13.2 in heating and
cooling runs at magnetic field change of 18 kOe.

Inset — anisotropy of MCE

magnetic films exhibit anisotropy
associated with the shape of the
sample: the magnetization along the
plane of the sample is much higher
than in the perpendicular direction
of magnetization due to the shape
anisotropy [20], and with a field
increasing the anisotropy decreases.
It would be reasonable to expect that
the same effect is inherent to MCE.
Indeed, the anisotropy of the MCE is
observed in the studied sample, but
in a field of 18 kOe, this effect is
very weak (see inset in Fig. 2, shown
for the heating run only). Stronger
anisotropy of MCE appears in weak
fields (Fig. 3), and the anisotropy is observed in the whole temperature range in which
the MCE occurs. The MCE value is larger when the magnetic field is applied along
the plane of the sample. In addition, in weak applied fields a more significant difference
between the values of MCE at FOMPT in heating and cooling runs is observed.
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In view of the possible use

Fig. 3. Anisotropy of MCE in Ni50.3Mn36.5Sn13.2
at magnetic field changes of 3 kOe applied perpendicular

and parallel to the ribbon plane

of Heusler alloys in magnetic
refrigerators the study of the
temporal dependence of the
magnetocaloric effect is a very
interest issue. In Fig. 4 the
temperature dependences of the
MCE in the heating run at three
different heating rates are shown.
In the FM-PM magnetic phase
transition region, it is seen that
the MCE value the same at all
modes. Nevertheless, there is a
strong dependence of the MCE
on the heating rate around the
FOMPT. At a sample heating rate
of 3.6 K/min, the inverse MCE value is equal to ∆Tad = ˘0.17 K, and the inverse and
direct effects are nearly equals in modulus. At 2.2 K/min rate of temperature scan, the
maximum value of the effect is equal to ∆Tad = ˘0.07 K, and at 0.6 K/min the effect is
only ∆Tad = ˘0.027 K. The longer time the sample is in the transition area, the MCE
is smaller. In addition, the temperature of the maximum of MCE is shifted to higher
temperatures with the rate of temperature scan. This may be partly due to the fact that
the lock-in amplifier that is used to measure the differential thermocouple signal has no
time to instantly adjust to the maximum useful signal, as a consequence that in this
region there is a strong phase change between the variation of the sample temperature
and the applied magnetic field. But the increase of the MCE with rate of temperature
scan is not explained by the instrumental effect. In this case, the measured signal
should be less because the lock-in amplifier does not have time to tune the true value
of MCE. Further confirmation of the truth of these results is the measurement of the
MCE at the same conditions around the FM-PM transition, where a time dependence
of MCE is not observed.

The observed behavior significantly differs from published reports of time dependence
of MCE [21–24]. In general, these results are related to the so-called magnetic field first
application effect, when a large MCE near the MSPT originates. The first application
of a magnetic field results in an irreversible phase transition. With further magnetic
field on/off cycling the MCE decreases and becomes similar to the normal time-
independent MCE. The irreversible character of the magnetic field-induced martensitic
transformation makes a sensitive contribution of the structural subsystem to ∆Tad to
be only appreciated during the first application of the magnetic field. Thereafter, the
behavior of ∆Tad is essentially determined by the magnetic subsystem only. Combination
of these factors results in the observed behavior of the adiabatic temperature change
during subsequent actions of the magnetic field, i. e., becomes reversible and typical
of conventional MCE. In contrast to these findings [21–24], in our experiment we did
not study the effect of the first run, as the alternating magnetic field is applied to the
sample during all the experiment (as it would be in real magnetic refrigerators), and
during the experiment there are thousands of field on/off cycles. Since the contribution
of the structural subsystems only appears at the first field application, but the MCE
value continues to decrease, we are actually observing some relaxation processes in the
subsystem. It is appropriate to compare these times (tens of seconds) with relaxation
times in FeRh [25], where the magnetization changes slightly over time more than 103 s.
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The reason for the unusual

Fig. 4. MCE in Ni50.3Mn36.5Sn13.2 at different rates
of temperature sweep. Inset — field dependence of MCE

at 272 K

behavior of the MCE, in the
studied Heusler alloy, can be
its independence of either the
external magnetic field long-time
relaxation processes, and/or
relaxation processes that take
place under the influence of an
alternating magnetic field. Effect
of alternating magnetic fields
on the magnetostructural phase
transitions is little studied, and
further researches are needed.
Perhaps the long-time relaxation
processes are characteristic to
all materials, although in bulk
materials the characteristic relaxation times can be of tens of hours, and in thin films
and ribbons, as we have seen, these times are tens of seconds. It was recently found,
that continuously application of cyclic magnetic filed within the temperature hysteresis
loop in Ni47Mn40Sn12.5Cu0.5 Heusler alloy results in «inverse MCE — direct MCE»
crossover due to irreversible martencite-austenite transition [26]. The observed in weak
fields in the Ni50.3Mn36.5Sn13.2 Heusler alloy cannot be explained in a similar way, since
the applied weak magnetic fields cannot cause magnetostructural phase transitions.
Therefore, the observed phenomenon of the dependence of the MCE on the temperature
sweeping rate can be due to relaxation processes.

3. Conclusion
In conclusion, the study of relaxation processes may provide the key to understanding

the difference of MCE in the heating and cooling runs observed in Heusler alloys [24].
This difference may be due to various relaxation processes in these protocols, even if the
same rate of the temperature is scanned. Thus, research of magnetocaloric properties
of materials in the real conditions, in which they will be used in actual magnetic
refrigerators, need to discuss about the prospects of the practical use of these materials
in magnetic refrigeration technology. The results of this work show that the relaxation
processes and anisotropy effects of MCE need to be taken into account at the design of
magnetic refrigerators to get the highest cooling power efficiency of the machine.
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СПЛАВА ГЕЙСЛЕРА Ni50.3Mn36.5Sn13.2 В ЦИКЛИЧЕСКИХ
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Исследованы магнитокалорические свойства ленточного образца сплава Гейслера
Ni50.3Mn36.5Sn13.2 прямым методом в циклических магнитных полях. В слабых маг-
нитных полях наблюдается сильная анизотропия магнитокалорического эффекта:
магнитокалорический эффект в образце больше в случае приложения магнитного по-
ля параллельно плоскости ленты. С ростом магнитного поля наблюдается уменьше-
ние анизотропии эффекта. Обнаружено, что в циклических магнитных полях значе-
ние магнитокалорического эффекта вблизи магнитоструктурного фазового перехода
зависит от скорости изменения температуры образца: чем выше скорость развёртки
температуры, тем выше значение магнитокалорического эффекта.

Kлючевые слова: магнитокалорический эффект, циклическое магнитное поле, сплав
Гейслера, лента, анизотропия.
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