Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 9, 2013

Heterogeneity of neural crest-derived melanocytes

  • Miroslawa Cichorek EMAIL logo , Malgorzata Wachulska and Aneta Stasiewicz
From the journal Open Life Sciences

Abstract

The majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.

[1] Fitzpatrick T., Becker S.W., Lerner A.B., Montgomery H., Tyrosinase in human skin: Demonstration of its presence and its role in human melanin formation, Science, 1950, 112, 223–225 http://dx.doi.org/10.1126/science.112.2904.22310.1126/science.112.2904.223Search in Google Scholar PubMed

[2] Nordlund J.J., Boissy R.E., Hearing V.J., King R.A, Ortonne J.P., The Pigmentary System. Physiology and Pathophysiology, Oxford University Press, New York, 1998 Search in Google Scholar

[3] Halaban R., Hebert D.N., Fisher D.E., Biology of Melanocytes, In: Freedberg I.M., Wolff K., Austen K.F., Goldsmith L.A., Katz S.I. (Eds.), Fitzpatrick’s Dermatology in General Medicine, McGraw-Hill, New York, 2003 Search in Google Scholar

[4] Aoki H., Yamada Y., Hara A., Kunisada T., Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes, Development., 2009, 136, 2511–2521 http://dx.doi.org/10.1242/dev.03716810.1242/dev.037168Search in Google Scholar PubMed

[5] Colombo S., Berlin I., Delmas V., Larue L., Classical and nonclassical melanocytes in vertebrates, In: Borovansky J., Riley P.A., (Eds.), Melanins and melanosomes. Biosynthesis, biogenesis, physiological and pathological functions, Willey-Blackwell, iWeinheim, 2011 10.1002/9783527636150.ch2Search in Google Scholar

[6] Rawles M.E., Origin of pigment cells from neural crest in the mouse embryo, Physiol. Zool., 1947, 20, 248–270 10.1086/physzool.20.3.30151958Search in Google Scholar PubMed

[7] O’Rahilly R., Müller F., The development of the neural crest in the human, J. Anat., 2007, 211, 335–351 http://dx.doi.org/10.1111/j.1469-7580.2007.00773.x10.1111/j.1469-7580.2007.00773.xSearch in Google Scholar PubMed PubMed Central

[8] Harris M.L., Erickson C.A., Lineage specification in neural crest cell path finding, Dev. Dyn., 2007, 236, 1–19 http://dx.doi.org/10.1002/dvdy.2091910.1002/dvdy.20919Search in Google Scholar PubMed

[9] Betters E., Liu Y., Kjaeldgaard A., Sundström E., García-Castro MI., Analysis of early human neural crest development, Dev. Biol., 2010, 344, 578–592 http://dx.doi.org/10.1016/j.ydbio.2010.05.01210.1016/j.ydbio.2010.05.012Search in Google Scholar PubMed PubMed Central

[10] Theveneau E., Mayor R., Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration, Dev. Biol., 2012, 366, 34–54 http://dx.doi.org/10.1016/j.ydbio.2011.12.04110.1016/j.ydbio.2011.12.041Search in Google Scholar PubMed

[11] Le Douarin N.M., Creuzet S., Couly G., Dupin E., Neural Crest Cell plasticity and its limits, Development, 2004, 131, 4637–4650 http://dx.doi.org/10.1242/dev.0135010.1242/dev.01350Search in Google Scholar PubMed

[12] Ernfors P., Cellular origin and developmental mechanisms during the formation of skin melanocytes, Exp. Cell Res., 2010, 316, 1397–1407 http://dx.doi.org/10.1016/j.yexcr.2010.02.04210.1016/j.yexcr.2010.02.042Search in Google Scholar PubMed

[13] Lu Y., Zhu W.Y., Tan C., Yu G.H., Gu J.X., Melanocytes are potential immunocompetent cells: evidence from recognition of immunological characteristics of cultured human melanocytes, Pigment Cell Res., 2002, 15, 454–460 http://dx.doi.org/10.1034/j.1600-0749.2002.02065.x10.1034/j.1600-0749.2002.02065.xSearch in Google Scholar

[14] Slominski A., Paus R., Are L-tyrosine and L-dopa hormone-like bioregulators?, J. Theor. Biol., 1990, 143, 123–138 http://dx.doi.org/10.1016/S0022-5193(05)80292-910.1016/S0022-5193(05)80292-9Search in Google Scholar

[15] Slominski A., Paus R., Schadendorf D., Melanocytes as “sensory” and regulatory cells in the epidermis, J. Theor. Biol., 1993, 164, 103–120 http://dx.doi.org/10.1006/jtbi.1993.114210.1006/jtbi.1993.1142Search in Google Scholar PubMed

[16] Schallreuter K.U., Lemke K.R., Pittelkow M.R., Wood J.M., Körner C., Malik R., Catecholamines in human keratinocyte differentiation, J. Invest. Dermatol., 1995, 104, 953–957 http://dx.doi.org/10.1111/1523-1747.ep1260621810.1111/1523-1747.ep12606218Search in Google Scholar PubMed

[17] Grando S.A., Pittelkow M.R., Schallreuter K.U., Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance., J. Invest. Dermatol., 2006, 126, 1948–1965 http://dx.doi.org/10.1038/sj.jid.570015110.1038/sj.jid.5700151Search in Google Scholar PubMed

[18] Slominski A., Wortsman J., Luger T., Paus R., Solomon S., Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress, Physiol. Rev., 2000, 80, 979–1020 10.1152/physrev.2000.80.3.979Search in Google Scholar PubMed

[19] Slominski A., Wortsman J., Neuroendocrinology of the skin, Endocr. Rev., 2000, 21, 457–487 http://dx.doi.org/10.1210/er.21.5.45710.1210/er.21.5.457Search in Google Scholar

[20] Slominski A., Wortsman J., Tobin D.J., The cutaneous serotoninergic/melatoninergic system: securing a place under the sun, FASEB J., 2005, 19, 176–194 http://dx.doi.org/10.1096/fj.04-2079rev10.1096/fj.04-2079revSearch in Google Scholar PubMed

[21] Slominski A., Neuroendocrine activity of the melanocyte, Exp. Dermatol., 2009, 18, 760–763 http://dx.doi.org/10.1111/j.1600-0625.2009.00892.x10.1111/j.1600-0625.2009.00892.xSearch in Google Scholar PubMed PubMed Central

[22] Slominski A.T., Zmijewski M.A., Skobowiat C., Zbytek B., Slominski R.M., Steketee J.D., Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system, Adv. Anat. Embryol. Cell Biol., 2012, 212, 1–115 http://dx.doi.org/10.1007/978-3-642-19683-6_110.1007/978-3-642-19683-6_1Search in Google Scholar PubMed PubMed Central

[23] Tachibana M., Sound needs sound melanocytes to be heard, Pigment Cell Res., 1999, 12, 344–354 http://dx.doi.org/10.1111/j.1600-0749.1999.tb00518.x10.1111/j.1600-0749.1999.tb00518.xSearch in Google Scholar PubMed

[24] Mjaatvedt C.H., Kern C.B., Norris R.A., Fairey S., Cave C.L., Normal distribution of melanocytes in the mouse heart, Anat. Rec. Discov. Mol. Cell. Evol. Biol., 2005, 285, 748–757 http://dx.doi.org/10.1002/ar.a.2021010.1002/ar.a.20210Search in Google Scholar PubMed

[25] Goldgeier M,H,, Klein L.E., Klein-Angerer S., Moellmann G., Nordlund J.J., The distribution of melanocytes in the leptomeninges of the human brain., J. Invest. Dermatol., 1984, 82, 235–238 http://dx.doi.org/10.1111/1523-1747.ep1226011110.1111/1523-1747.ep12260111Search in Google Scholar PubMed

[26] Cramer S.F., The histogenesis of acquired melanocytic nevi-based on a new concept of melanocytic differentiation, Am. J. Dermatopathol., 1984, 6, 289–298 Search in Google Scholar

[27] Cramer S.F., Stem cells for epidermal melanocytesa challenge for students of dermatology, Am. J. Dermatopathol., 2009, 31, 331–341 http://dx.doi.org/10.1097/DAD.0b013e31819cd0cb10.1097/DAD.0b013e31819cd0cbSearch in Google Scholar PubMed

[28] Adameyko I., Lallemend F., Aquino J.B., Pereira J.A., Topilko P., Muller T., et al., Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin, Cell, 2009, 139, 366–379 http://dx.doi.org/10.1016/j.cell.2009.07.04910.1016/j.cell.2009.07.049Search in Google Scholar PubMed

[29] Dupin E., Real C., Glavieux-Pardanaud C., Vaigot P., LeDourain N.M., Reversal of developmental restrictions in neural crest cells lineages; transition from Schwann cells to glial-melanocytic precursors in vitro, Proc. Natl. Acad. Sci. USA, 2003, 100, 5229–5233 http://dx.doi.org/10.1073/pnas.083122910010.1073/pnas.0831229100Search in Google Scholar PubMed PubMed Central

[30] Cramer S.F., Fesyuk A., On the development of neurocutaneous units-implications for the histogenesis of congenital, acquired, and dysplastic nevi, Am. J. Dermatopathol., 2012, 34, 60–81 http://dx.doi.org/10.1097/DAD.0b013e31822d071a10.1097/DAD.0b013e31822d071aSearch in Google Scholar PubMed

[31] Hara M., Toyoda M., Yaar M., Bhawan J., Avila E.M., Penner I.R., et al., Innervation of melanocytes in human skin, J. Exp. Med., 1996, 184, 1385–1395 http://dx.doi.org/10.1084/jem.184.4.138510.1084/jem.184.4.1385Search in Google Scholar PubMed PubMed Central

[32] Holbrook K.A., Underwood R.A., Vogel A.M., Gown A.M., Kimball H., The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by anti melanoma monoclonal antibody HMB-45, Anat. Embryol., 1989, 180, 443–455 http://dx.doi.org/10.1007/BF0030511910.1007/BF00305119Search in Google Scholar PubMed

[33] Gleason B.C., Crum C.P., Murphy G.F., Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts, J. Cutan. Pathol., 2008, 35, 615–622 http://dx.doi.org/10.1111/j.1600-0560.2007.00881.x10.1111/j.1600-0560.2007.00881.xSearch in Google Scholar PubMed PubMed Central

[34] Zabierowski S.E., Fukunaga-Kalabis M., Li L., Herlyn M., Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res., 2011, 24, 422–429 http://dx.doi.org/10.1111/j.1755-148X.2011.00847.x10.1111/j.1755-148X.2011.00847.xSearch in Google Scholar PubMed

[35] Hirobe T., How are proliferation and differentiation of melanocytes regulated?, Pigment Cell Melanoma Res., 2011, 24, 462–478 http://dx.doi.org/10.1111/j.1755-148X.2011.00845.x10.1111/j.1755-148X.2011.00845.xSearch in Google Scholar PubMed

[36] Cooper C.D., Raible D.W., Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes, Semin. Cell Dev. Biol., 2009, 20, 105–110 http://dx.doi.org/10.1016/j.semcdb.2008.09.00810.1016/j.semcdb.2008.09.008Search in Google Scholar PubMed PubMed Central

[37] Sommer L., Generation of melanocytes from neural crest cells, Pigment Cell Melanoma Res., 2011, 24, 411–421 http://dx.doi.org/10.1111/j.1755-148X.2011.00834.x10.1111/j.1755-148X.2011.00834.xSearch in Google Scholar PubMed

[38] Hari L., Miescher I., Shakhova O., Suter U., Chin L., Taketo M., et al., Temporal control of neural crest lineage generation by Wnt/β-catenin signaling, Development, 2012, 139, 2107–2117 http://dx.doi.org/10.1242/dev.07306410.1242/dev.073064Search in Google Scholar PubMed

[39] Cornell R.A., Eisen J.S., Notch in the pathway: the roles of Notch signaling in neural crest development, Semin. Cell Dev. Biol., 2005, 16, 663–672 http://dx.doi.org/10.1016/j.semcdb.2005.06.00910.1016/j.semcdb.2005.06.009Search in Google Scholar PubMed

[40] Raible D.W., Ragland J.W., Reiterated Wnt and BMP signals in neural crest development, Semin. Cell Dev. Biol., 2005, 16, 673–682 http://dx.doi.org/10.1016/j.semcdb.2005.06.00810.1016/j.semcdb.2005.06.008Search in Google Scholar PubMed

[41] Lin J.Y., Fisher D.E., Melanocyte biology and skin pigmentation, Nature, 2007, 445, 843–850 http://dx.doi.org/10.1038/nature0566010.1038/nature05660Search in Google Scholar PubMed

[42] Clay M.R., Halloran M.C., Regulation of cell adhesions and motility during initiation of neural crest migration, Curr. Opin. Neurobiol., 2011, 21, 17–22 http://dx.doi.org/10.1016/j.conb.2010.09.01310.1016/j.conb.2010.09.013Search in Google Scholar PubMed PubMed Central

[43] Vance K.W., Goding C.R., The transcription network regulating melanocyte development and melanoma, Pigment Cell Res., 2004, 17, 318–325 http://dx.doi.org/10.1111/j.1600-0749.2004.00164.x10.1111/j.1600-0749.2004.00164.xSearch in Google Scholar PubMed

[44] McGill G.G., Horstmann M., Widlund H.R., Du J., Motyckova G., Nishimura E.K. et al., Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability, Cell, 2002, 109, 707–718 http://dx.doi.org/10.1016/S0092-8674(02)00762-610.1016/S0092-8674(02)00762-6Search in Google Scholar

[45] Yamaguchi Y., Brenner M., Hearing V.J., The regulations of skin pigmentation, J. Biol. Chem., 2007, 13, 1–11 Search in Google Scholar

[46] Nishimura E.K., Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation, Pigment Cell Melanoma Res., 2011, 24, 401–404 http://dx.doi.org/10.1111/j.1755-148X.2011.00855.x10.1111/j.1755-148X.2011.00855.xSearch in Google Scholar

[47] Bennet D.C., Medrano E.E., Molecular regulation of melanocyte senescence, Pigment Cell Res., 2002, 15, 242–250 http://dx.doi.org/10.1034/j.1600-0749.2002.02036.x10.1034/j.1600-0749.2002.02036.xSearch in Google Scholar

[48] Rizos H., Becker T.M., Holland E.A., Cell cycle regulation in the melanocyte, In: Thomson J.F., Morton D.L., Kroon B.B.R., Textbook of Melanoma, Martin Dunitz Taylor & Francis Group, London, 2004 10.1201/b14732-3Search in Google Scholar

[49] Nordlund J.J., The lives of pigment cells, Dermatol. Clin., 1986, 4, 407–418 10.1016/S0733-8635(18)30803-9Search in Google Scholar

[50] Costin G.E., Hearing V.J., Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 2007, 21, 976–994 http://dx.doi.org/10.1096/fj.06-6649rev10.1096/fj.06-6649revSearch in Google Scholar PubMed

[51] Haddad M.M., Xu W., Medrano E.E., Aging in epidermal melanocytes: cell cycle genes and melanins, J. Investig. Dermatol. Symp. Proc., 1998, 3, 36–40 10.1038/jidsp.1998.9Search in Google Scholar

[52] Selzer E., Schlagbauer-Wadl H., Okamoto I., Pehamberger H., Pötter R., Jansen B., Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines, Melanoma Res., 1998, 8, 197–203 http://dx.doi.org/10.1097/00008390-199806000-0000110.1097/00008390-199806000-00001Search in Google Scholar PubMed

[53] Campisi J., The role of cellular senescence in skin aging, J. Investig. Dermatol. Symp. Proc., 1998, 3, 1–5 10.1038/jidsp.1998.2Search in Google Scholar

[54] Seiji H., Fitzpatrick T.B., The reciprocal relationship between melanization and tyrosinase activity in melanosomes (melanin granules), J. Biochem., 1961, 49, 700–706 10.1093/oxfordjournals.jbchem.a127360Search in Google Scholar PubMed

[55] Simon D.J., Peles D., Wakamatsu K., Ito S., Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology and function, Pigment Cell Melanoma Res., 2009, 22, 563–579 http://dx.doi.org/10.1111/j.1755-148X.2009.00610.x10.1111/j.1755-148X.2009.00610.xSearch in Google Scholar

[56] Pathak M.A., Rilley F.C., Fitzpatrick T.B., Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light., J. Invest. Dermatol., 1962, 39, 435–443 10.1038/jid.1962.136Search in Google Scholar

[57] Riley P.A., Melanin., Int. J. Biochem. Cell Biol., 1997, 29, 1235–1239 http://dx.doi.org/10.1016/S1357-2725(97)00013-710.1016/S1357-2725(97)00013-7Search in Google Scholar

[58] Slominski A., Tobin D.J., Shibahara S., Wortsman J., Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 2004, 84, 1155–1228 http://dx.doi.org/10.1152/physrev.00044.200310.1152/physrev.00044.2003Search in Google Scholar PubMed

[59] Bush W.D., Simon J.D., Quantification of Ca(2+) binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis, Pigment Cell Res., 2007, 20, 134–139 http://dx.doi.org/10.1111/j.1600-0749.2007.00362.x10.1111/j.1600-0749.2007.00362.xSearch in Google Scholar PubMed

[60] Ito S., High-performance liquid chromatography (HPLC) analysis of eu- and pheomelanin in melanogenesis control, J. Invest. Dermatol., 1993, 100, 166–171 http://dx.doi.org/10.1111/1523-1747.ep1246279210.1111/1523-1747.ep12462792Search in Google Scholar PubMed

[61] Fitzpatrick T.B., Miyamoto M., Ishikawa K., The evolution of concepts of melanin biology, Arch. Dermatol., 1967, 96, 305–323 http://dx.doi.org/10.1001/archderm.1967.0161003008301510.1001/archderm.1967.01610030083015Search in Google Scholar

[62] Hearing V.J., Tsukamoto K., Enzymatic control of pigmentation in mammals, FASEB J., 1991, 5, 2902–2909 10.1096/fasebj.5.14.1752358Search in Google Scholar

[63] Hoashi T., Watabe H., Muller J., Yamaguchi Y., Vieira W.D., Hearing V.J., MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes, J. Biol. Chem., 2005, 280, 14006–14016 http://dx.doi.org/10.1074/jbc.M41369220010.1074/jbc.M413692200Search in Google Scholar PubMed

[64] Park H.Y., Kasmadaki M., Gilchrest Y.B.A., Cellular mechanisms regulating melanogenesis, Cell Mol. Life Sci., 2009, 66, 1493–1506 http://dx.doi.org/10.1007/s00018-009-8703-810.1007/s00018-009-8703-8Search in Google Scholar PubMed

[65] Ito S., The IFPCS presidential lecture: a chemist’s view of melanogenesis, Pigment Cell Res., 2003, 16, 230–236 http://dx.doi.org/10.1034/j.1600-0749.2003.00037.x10.1034/j.1600-0749.2003.00037.xSearch in Google Scholar

[66] Pawelek J.M., After dopachrome?, Pigment Cell Res., 1991, 4, 53–62 http://dx.doi.org/10.1111/j.1600-0749.1991.tb00315.x10.1111/j.1600-0749.1991.tb00315.xSearch in Google Scholar

[67] Olivares C., Jiménez-Cervantes C., Lozano J.A. Solano F., García-Borrón J.C., The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase, Biochem. J., 2001, 354, 131–139 http://dx.doi.org/10.1042/0264-6021:354013110.1042/0264-6021:3540131Search in Google Scholar

[68] Ito S., Wakamatsu K., Chemistry of mixed melanogenesis-pivotal roles of dopaquinone, Photochem. Photobiol., 2008, 84, 582–592 http://dx.doi.org/10.1111/j.1751-1097.2007.00238.x10.1111/j.1751-1097.2007.00238.xSearch in Google Scholar

[69] Del Marmol V., Beerman F., Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 1996, 381, 165–168 http://dx.doi.org/10.1016/0014-5793(96)00109-310.1016/0014-5793(96)00109-3Search in Google Scholar

[70] Korner A.M., Pawelek J., DOPAchrome conversion: a possible control point in melanin biosynthesis, J. Invest. Dermatol., 1980, 75, 192–195 http://dx.doi.org/10.1111/1523-1747.ep1252265010.1111/1523-1747.ep12522650Search in Google Scholar PubMed

[71] Hearing V.J., Determination of melanin synthetic pathway, J. Invest. Dermatol., 2011, 131, 8–11 http://dx.doi.org/10.1038/jid.2010.33510.1038/jid.2010.335Search in Google Scholar PubMed

[72] Schiaffino M.V., Signalling pathways in melanosome biogenesis and pathology, Int. J. Biochem. Biol., 2010, 42, 1094–1104 http://dx.doi.org/10.1016/j.biocel.2010.03.02310.1016/j.biocel.2010.03.023Search in Google Scholar PubMed PubMed Central

[73] Goding C.R., Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage, Genes. Dev., 2000, 14, 1712–1728 10.1101/gad.14.14.1712Search in Google Scholar

[74] Park H.Y., Wu C., Yaar M., Stachur C.M., Kosmadaki M., Gilchrest B.A., Role of BMP-4 and its signaling pathways in cultured human melanocytes, Int. J. Cell Biol., 2009, 2009, doi:10.1155/2009/750482 10.1155/2009/750482Search in Google Scholar PubMed PubMed Central

[75] Schallreuter K.U., Wood J.M., Pittelkow M.R., Gütlich M., Lemke K.R., Rödl W., et al., Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin, Science, 1994, 263, 1444–1446 http://dx.doi.org/10.1126/science.812822810.1126/science.8128228Search in Google Scholar PubMed

[76] Hearing V.J., Biogenesis of pigment granules: a sensitive way to regulate melanocyte function, J. Dermatol. Sci., 2005, 37, 3–14 http://dx.doi.org/10.1016/j.jdermsci.2004.08.01410.1016/j.jdermsci.2004.08.014Search in Google Scholar PubMed

[77] Watabe H., Valencia J.C., Le Pape E., Yamaguchi Y., Nakamura M., Rouzaud F., Involvement of dynein and spectrin with early melanosome transport and melanosomal protein trafficking, J. Invest. Dermatol., 2008, 128, 162–173 http://dx.doi.org/10.1038/sj.jid.570101910.1038/sj.jid.5701019Search in Google Scholar PubMed PubMed Central

[78] Raposo G., Tenza D., Murphy D.M., Berson J.F., Marks M.S., Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells, J. Cell Biol., 2001, 152, 809–824 http://dx.doi.org/10.1083/jcb.152.4.80910.1083/jcb.152.4.809Search in Google Scholar PubMed PubMed Central

[79] Kushimoto T., Basrur V., Valencia J., Matsunaga J., Vieira W. D., Ferrans V.J., et al., A model for melanosome biogenesis based on the purification and analysis of early melanosomes, Proc. Natl. Acad. Sci. USA., 2001, 98, 10698–10703 http://dx.doi.org/10.1073/pnas.19118479810.1073/pnas.191184798Search in Google Scholar PubMed PubMed Central

[80] Kondo T., Hearing V.J., Update on the regulation of mammalian melanocyte function and skin pigmentation, Expert. Rev. Dermatol., 2011, 6, 97–108 http://dx.doi.org/10.1586/edm.10.7010.1586/edm.10.70Search in Google Scholar PubMed PubMed Central

[81] Busam K.J., Charles C., Lee G., Halpern A.C., Morphologic features of melanocytes, pigment keratinocytes, and melanophages by in vivo confocal scanning laser microscopy, Mod. Pathol., 2001, 14, 862–868 http://dx.doi.org/10.1038/modpathol.388040210.1038/modpathol.3880402Search in Google Scholar PubMed

[82] Fitzpatrick T.B., Breathnach A.S., The epidermal melanin unit system, Dermatol. Wochenschr., 1963, 147, 481–489 Search in Google Scholar

[83] Haass N.K., Smalley K.S., Li L., Herlyn M., Adhesion, migration and communications in melanocytes and melanoma, Pigment Cell Res., 2005, 18, 150–159 http://dx.doi.org/10.1111/j.1600-0749.2005.00235.x10.1111/j.1600-0749.2005.00235.xSearch in Google Scholar PubMed

[84] Miot L.D., Miot H.A., Silva M.G., Marques M.E., Physiopathology of melasma, An. Bras. Dermatol., 2009, 84, 623–635 http://dx.doi.org/10.1590/S0365-0596200900060000810.1590/S0365-05962009000600008Search in Google Scholar

[85] Rickelt S., Franke W.W., Doerflinger Y., Goerdt S., Brandner J.M., Peitsch W.K., Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherent junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins, Cell Tissue Res., 2008, 334, 401–422 http://dx.doi.org/10.1007/s00441-008-0704-710.1007/s00441-008-0704-7Search in Google Scholar PubMed

[86] Joshi P.G., Nair N., Begum G., Joshi N.B., Sinkar V.P., Vora S., Melanocyte-keratinocyte interaction induces calcium signaling and melanin transfer to keratinocytes, Pigment Cell Res., 2007, 20, 380–384 10.1111/j.1600-0749.2007.00397.xSearch in Google Scholar PubMed

[87] Plonka P.M., Passeron T., Brenner D.J., Tobin S., Shibahara S., Thomas A., What are melanocytes really doing all day long…?, Exp. Dermatol., 2009, 18, 799–819 http://dx.doi.org/10.1111/j.1600-0625.2009.00912.x10.1111/j.1600-0625.2009.00912.xSearch in Google Scholar PubMed PubMed Central

[88] Choi W., Kolbe L., Hearing V.J., Characterization of the bioactive motif of neuregulin-1, a fibroblastderived paracrine factor that regulates the constitutive color and the function of melanocytes in human skin, Pigment Cell Melanoma Res., 2012, 25, 1–5 http://dx.doi.org/10.1111/j.1755-148X.2012.01002.x10.1111/j.1755-148X.2012.01002.xSearch in Google Scholar PubMed PubMed Central

[89] Lee A.Y., Role of keratinocytes in the development of vitiligo, Ann. Dermatol., 2012, 24, 115–125 http://dx.doi.org/10.5021/ad.2012.24.2.11510.5021/ad.2012.24.2.115Search in Google Scholar PubMed PubMed Central

[90] Tabone-Eglinger S., Wehrle-Haller M., Aebischer N., Jacquier M.C., Wehrle-Haller B., Membrane bound Kit ligand regulates melanocyte adhesion and survival, providing physical interaction with an intraepithelial niche, FASEB J., 2012, 26, 3738–3753 http://dx.doi.org/10.1096/fj.12-20604510.1096/fj.12-206045Search in Google Scholar PubMed

[91] Hirobe T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes, Pigment Cell Res., 2004, 18, 2–12 http://dx.doi.org/10.1111/j.1600-0749.2004.00198.x10.1111/j.1600-0749.2004.00198.xSearch in Google Scholar PubMed

[92] Imokawa G., Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigment Cell Res., 2004, 17, 96–110 http://dx.doi.org/10.1111/j.1600-0749.2003.00126.x10.1111/j.1600-0749.2003.00126.xSearch in Google Scholar PubMed

[93] Wang Z., Coleman D.J., Bajaj G., Liang X., Ganguli-Indra G., Indra AK., RXRα ablation in epidermal keratinocytes enhances UVR-induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes, J. Invest. Dermatol., 2011, 131, 177–187 http://dx.doi.org/10.1038/jid.2010.29010.1038/jid.2010.290Search in Google Scholar PubMed PubMed Central

[94] Taylor S., Grimes P., Lim J., Im S., Lui H., Postinflammatory hyperpigmentation, J. Cutan. Med. Surg., 2009, 13, 183–191 10.2310/7750.2009.08077Search in Google Scholar PubMed

[95] Slominski A., Zmijewski M.A., Pawelek J., L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions, Pigment Cell Melanoma Res., 2012, 25, 14–27 http://dx.doi.org/10.1111/j.1755-148X.2011.00898.x10.1111/j.1755-148X.2011.00898.xSearch in Google Scholar PubMed PubMed Central

[96] Commo S., Bernard B. A., Melanocyte subpopulation turnover during the human hair cycle: an immunohistochemical study, Pigment Cell Res., 2000, 13, 253–259 http://dx.doi.org/10.1034/j.1600-0749.2000.130407.x10.1034/j.1600-0749.2000.130407.xSearch in Google Scholar PubMed

[97] Slominski A., Wortsman J., Plonka P.M., Schallreuter K.U., Paus R., Tobin D.J., Hair Follicle Pigmentation, J. Invest. Dermatol., 2005, 124, 13–21 http://dx.doi.org/10.1111/j.0022-202X.2004.23528.x10.1111/j.0022-202X.2004.23528.xSearch in Google Scholar PubMed PubMed Central

[98] Commo S., Gaillard O., Thibaut S., Bernard B.A., Absence of TRP-2 in melanogenic melanocytes of human hair, Pigment Cell Res., 2004, 17, 488–497 http://dx.doi.org/10.1111/j.1600-0749.2004.00170.x10.1111/j.1600-0749.2004.00170.xSearch in Google Scholar PubMed

[99] Randall V.A., Androgens and hair growth, Dermatol. Ther., 2008, 21, 314–328 http://dx.doi.org/10.1111/j.1529-8019.2008.00214.x10.1111/j.1529-8019.2008.00214.xSearch in Google Scholar PubMed

[100] Slominski A., Paus R., Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth, J. Invest. Dermatol., 1993, 101, 90–97 http://dx.doi.org/10.1111/1523-1747.ep1236299110.1111/1523-1747.ep12362991Search in Google Scholar PubMed

[101] Slominski A., Paus R., Plonka P., Chakraborty A., Maurer M., Pruski D., et al., Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle, J. Invest. Dermatol., 1994, 102, 862–869 http://dx.doi.org/10.1111/1523-1747.ep1238260610.1111/1523-1747.ep12382606Search in Google Scholar PubMed

[102] Goding C.R., Melanocytes; the new black, Int. J. Biochem. Cell Biol., 2007, 39, 275–279 http://dx.doi.org/10.1016/j.biocel.2006.10.00310.1016/j.biocel.2006.10.003Search in Google Scholar PubMed

[103] Nishimura E., Jordan S.A., Oshima H., Yoshida H., Osawa M., Moriyama M., et al., Dominant role of the niche in melanocyte stem-cell fate determination, Nature, 2002, 416, 854–860 http://dx.doi.org/10.1038/416854a10.1038/416854aSearch in Google Scholar PubMed

[104] Wan der Werf F., Baljet B., Otto A.J., Pigmentcontaining cells in extraocular tissues of the primate, Doc. Ophthalmol., 1992, 81, 357–368 10.1007/BF00169097Search in Google Scholar PubMed

[105] Hu D.N., Simon J., Sarna T., Role of ocular melanin in ophtalmic physiology and pathology, Phatochem. Phatobiol., 2008, 84, 639–644 http://dx.doi.org/10.1111/j.1751-1097.2008.00316.x10.1111/j.1751-1097.2008.00316.xSearch in Google Scholar PubMed

[106] Sharif N.A., Crider J.Y., Intracellular signaling in human iridial fibroblasts and iridial melanocytes in response to prostaglandins, endothelin, isoproterenol, and other pharmacological agents, Curr. Eye Res., 2011, 36, 310–320 http://dx.doi.org/10.3109/02713683.2010.54286910.3109/02713683.2010.542869Search in Google Scholar

[107] Sarna T.J., Properties and function of the ocular melanin — a photobiophysical view, Photochem. Photobiol. B., 1992, 12, 215–258 http://dx.doi.org/10.1016/1011-1344(92)85027-R10.1016/1011-1344(92)85027-RSearch in Google Scholar

[108] Melamed S., Lahav M., Sandbank U., Yassur Y., Ben-Sira I., Fuch’s heterochromic iridocyclitis: an electron microscopic study of the iris, Invest. Ophthalmol. Vis. Sci., 1978, 17, 1193–1199 Search in Google Scholar

[109] Higa K., Shimmura S., Miyashita H., Shimazaki J., Tsubota K., Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells, Exp. Eye Res., 2005, 81, 218–223 http://dx.doi.org/10.1016/j.exer.2005.01.02310.1016/j.exer.2005.01.023Search in Google Scholar

[110] Corti A., Recherche sur l’organe des l’ouie des mammiferes. Premiere partie 2 Z. wiss, Zoologie, 1851, 3, 109–169 Search in Google Scholar

[111] Meyer zum Gottesberge A.M., Calcium dependent intercellular interaction of the neural crest derivate-melanocytes and the epithelial cells of the vestibular organ, Acta. Otolaryngol., 1995, 520, 360–361 http://dx.doi.org/10.3109/0001648950912527010.3109/00016489509125270Search in Google Scholar

[112] Tachibana M., Cochlear melanocytes and MITF signaling, J. Invest. Dermatol. Symp. Proc., 2001, 6, 95–98 http://dx.doi.org/10.1046/j.0022-202x.2001.00017.x10.1046/j.0022-202x.2001.00017.xSearch in Google Scholar

[113] Price E.R., Fisher D.E., Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network, Neuron, 2001, 30, 15–18 http://dx.doi.org/10.1016/S0896-6273(01)00259-810.1016/S0896-6273(01)00259-8Search in Google Scholar

[114] Suzuki T., Nomoto Y., Nakagawa T., Kuwahat N., Ogawa H., Suzuki Y., et al., Age-dependent degeneration of the stria vascularis in human cochleae, Laryngoscope, 2006, 116, 1846–1850 http://dx.doi.org/10.1097/01.mlg.0000234940.33569.3910.1097/01.mlg.0000234940.33569.39Search in Google Scholar PubMed

[115] Wassif G.A., El Begermy M., Age-related changes of the cochlear lateral wall (stria vascularis) in the guinea pigs: an ultrastructural study, Egypt J. Histol., 2008, 31, 332–340 Search in Google Scholar

[116] Meyer zum Gottesberge A.M., Physiology and pathophysiology of inner ear melanin, Pigment Cell Res., 1988, 1, 238–249 http://dx.doi.org/10.1111/j.1600-0749.1988.tb00422.x10.1111/j.1600-0749.1988.tb00422.xSearch in Google Scholar PubMed

[117] Henderson D., McFadden S.L., Liu C.C., Hight N., Zheng X.Y., The role of antioxidants in protection from impulse noise, Ann. N. Y. Acad. Sci., 1999, 884, 368–380 http://dx.doi.org/10.1111/j.1749-6632.1999.tb08655.x10.1111/j.1749-6632.1999.tb08655.xSearch in Google Scholar PubMed

[118] Brito F.C., Kos L., Timeline and distribution of melanocyte precursors in the mouse heart, Pigment Cell Melanoma Res., 2008, 21, 464–470 http://dx.doi.org/10.1111/j.1755-148X.2008.00459.x10.1111/j.1755-148X.2008.00459.xSearch in Google Scholar PubMed

[119] Levin M.D., Lu M.M., Petrenko N.B., Hawkins B.J., Gupta T.H., Lang D., et al., Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers, J. Clin. Invest., 2009, 119, 3420–3436 10.1172/JCI39109Search in Google Scholar PubMed PubMed Central

[120] Takeda K., Takahashi N.H., Shibahara S., Neuroendocrine function of melanocytes: beyond the skin-deep melanin maker, Tohoku J. Exp. Med., 2007, 211, 201–221 http://dx.doi.org/10.1620/tjem.211.20110.1620/tjem.211.201Search in Google Scholar PubMed

[121] Zecca L., Bellei Ch., Costi P., Albertini A., Monzani E., Casella L., New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals, Proc. Natl. Acad. Sci. USA, 2008, 105, 17567–17572 http://dx.doi.org/10.1073/pnas.080876810510.1073/pnas.0808768105Search in Google Scholar PubMed PubMed Central

[122] Davids L.M., du Toit E., Kidson S.H., Todd G., A rare repigmentation pattern in a vitiligo patient: a clue to an epidermal stem-cell reservoir of melanocytes?, Clin. Exp. Dermatol., 2009, 34, 246–248 http://dx.doi.org/10.1111/j.1365-2230.2008.02793.x10.1111/j.1365-2230.2008.02793.xSearch in Google Scholar PubMed

[123] Nishimura E.K., Granter S.R., Fisher D.E., Mechanisms of hair graying; incomplete melanocyte stem cell maintance in the niche, Science, 2005, 307, 720–724 http://dx.doi.org/10.1126/science.109959310.1126/science.1099593Search in Google Scholar PubMed

[124] Toma J.G., McKenzie I.A., Bagli D., Miller F.D., Isolation and characterization of multipotent skinderived precursors from human skin, Stem Cells, 2005, 23, 727–737 http://dx.doi.org/10.1634/stemcells.2004-013410.1634/stemcells.2004-0134Search in Google Scholar PubMed

[125] Adameyko I., Lallemend F., Furlan A., Zinin N., Aranda S., Kitambi S.S., et al., Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest, Development, 2012, 139, 397–410 http://dx.doi.org/10.1242/dev.06558110.1242/dev.065581Search in Google Scholar PubMed PubMed Central

[126] Suder E., Bruzewicz S., Melanocytes of fetal dermis — studies with anti-HMB-45 antibody, Med. Sci. Monit., 2004, 10, 229–232 Search in Google Scholar

[127] Dupin E., Sommer L., Neural crest progenitors and stem cells: From early development to adulthood, Dev. Biol., 2012, 366, 83–95 http://dx.doi.org/10.1016/j.ydbio.2012.02.03510.1016/j.ydbio.2012.02.035Search in Google Scholar PubMed

[128] Schatton T., Frank M.H., Cancer stem cells and human malignant melanoma, Pigment Cell Melanoma Res., 2007, 21, 39–55 http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x10.1111/j.1755-148X.2007.00427.xSearch in Google Scholar PubMed PubMed Central

[129] Whiteman D.C., Pavan W.J., Bastian B.C., The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, casual pathways, and cells of origin, Pigment Cell Melanoma Res., 2011, 24, 879–897 http://dx.doi.org/10.1111/j.1755-148X.2011.00880.x10.1111/j.1755-148X.2011.00880.xSearch in Google Scholar PubMed PubMed Central

[130] Hoek K.S., Goding C.R., Cancer stem cells versus phenotype-switching in melanoma, Pigment Cell Melanoma Res., 2010, 23, 746–759 http://dx.doi.org/10.1111/j.1755-148X.2010.00757.x10.1111/j.1755-148X.2010.00757.xSearch in Google Scholar PubMed

Published Online: 2013-2-9
Published in Print: 2013-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 14.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0141-1/html
Scroll to top button