Vol. 67
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-15
Omnidirectional Compact Dual-Band Antenna Based on Dual-Frequency Unequal Split Ring Resonators for WLAN and WiMAX Applications
By
Progress In Electromagnetics Research M, Vol. 67, 157-167, 2018
Abstract
An omnidirectional compact antenna based on dual-band Split Ring Resonators (SRRs) for 2.45 GHz wireless local area network (WLAN) and 3.5 GHz worldwide interoperability for microwave access (WiMAX) applications is presented. Di erent and new properties of SRRs, such as dual-band or multi-band performance in the design of compact antennas, can be obtained by making the rings unequal and asymmetric. The dual-band SRR antenna is designed with a bandwidth control technique based on stored electromagnetic energy on the resonator rings. The obtained results show that the SRR antenna has good omnidirectional radiation pattern for both bands and good impedance bandwidth. In addition, compactness and flexibility are obtained with a simple structure of the SRRs.
Citation
Patricia Castillo-Aranibar, Alejandro Garcia-Lamperez, and Daniel Segovia-Vargas, "Omnidirectional Compact Dual-Band Antenna Based on Dual-Frequency Unequal Split Ring Resonators for WLAN and WiMAX Applications," Progress In Electromagnetics Research M, Vol. 67, 157-167, 2018.
doi:10.2528/PIERM17052202
References

1. Sun, X. L., W. S. W. Cheung, and T. I. Yuk, "Compact dual-band monopole antenna for 2.4/3.5 GHz WiMAX applications," PIERS Proceedings, 487-489, Taipei, March 25–28, 2013.

2. Lee, Y.-C. and J.-S. Sun, "Compact printed slot antennas for wireless dual- and multi-band operations," Progress In Electromagnetics Research, Vol. 88, 289-305, 2008.
doi:10.2528/PIER08111902

3. Verma, S. and P. Kumar, "Compact triple-band antenna for WiMAX and WLAN applications," Electronics Letters, Vol. 50, No. 7, 484-486, March 2014.
doi:10.1049/el.2013.4313

4. Wu, T., X.-W. Shi, P. Li, and H. Bai, "Tri-band microstrip-fed monopole antenna with dual polarisation characteristics for WLAN and WiMAX applications," Electronics Letters, Vol. 49, No. 25, 1597-1598, December 2013.
doi:10.1049/el.2013.3230

5. Hoang, T. V. and H. C. Park, "Very simple 2.45/3.5/5.8 GHz triple-band circularly polarised printed monopole antenna with bandwidth enhancement," Electronics Letters, Vol. 50, No. 24, 1792-1793, 2014.
doi:10.1049/el.2014.2935

6. Li, Y. and W. Yu, "A miniaturized triple band monopole antenna for WLAN and WiMAX applications," International Journal of Antennas and Propagation, Vol. 2015, article ID 146780, 2015.

7. Malik, J., A. Patnaik, and M. V. Kartikeyan, "A compact dual-band antenna with omnidirectional radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 503-506, 2015.
doi:10.1109/LAWP.2014.2370651

8. Zhao, G., F.-S. Zhang, Y. Song, Z.-B.Weng, and Y.-C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4–5 GHz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.
doi:10.2528/PIER07031405

9. Naidu, P. V. and R. Kumar, "Design of a compact ACS-fed dual band antenna for bluetooth/WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 55, 63-72, 2014.
doi:10.2528/PIERC14101803

10. Sze, J. Y., T. H. Hu, and T. J. Chen, "Compact dual-band annular-ring slot antenna with meandered grounded strip," Progress In Electromagnetics Research, Vol. 95, 299-308, 2009.
doi:10.2528/PIER09072404

11. Naidu, V. P. and R. Kumar, "Design of compact dual-band/tri-band CPW-fed monopole antennas for WLAN/WiMAX applications," Wireless Personal Communications, Vol. 82, No. 1, 267-282, May 2015, [Online], Available: http://dx.doi.org/10.1007/s11277-014-2207-z.
doi:10.1007/s11277-014-2207-z

12. Zhang, Z., M. F. Iskander, J. C. Langer, and J. Mathews, "Dual-band WLAN dipole antenna using an internal matching circuit," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1813-1818, May 2005.
doi:10.1109/TAP.2005.846784

13. Lizzi, L., F. Viani, and A. Massa, "Dual-band spline-shaped PCB antenna for Wi-Fi applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 616-619, 2009.
doi:10.1109/LAWP.2009.2021993

14. Chu, Q. X. and L. H. Ye, "Design of compact dual-wideband antenna with assembled monopoles," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4063-4066, December 2010.
doi:10.1109/TAP.2010.2078451

15. Geschke, R. H., B. Jokanovic, and P. Meyer, "Compact triple-band resonators using multiple split-ring resonators," 2009 European Microwave Conference (EuMC), 366-369, September 2009.

16. García-Lampérez, A. and M. Salazar-Palma, "Dual band filter with split-ring resonators," 2006 IEEE MTT-S International Microwave Symposium Digest, 519-522, June 2006.
doi:10.1109/MWSYM.2006.249625

17. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, April 2005.
doi:10.1109/TMTT.2005.845211

18. Mrabet, O. E., M. Aznabet, F. Falcone, M. Essaaidi, and M. Sorolla, "A compact antenna based on split ring resonator," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-3, April 2010.

19. Sanchez-Soriano, M., E. Bronchalo, and G. Torregrosa-Penalva, "Parallel-coupled line filter design from an energetic coupling approach," IET Microwaves, Antennas Propagation, Vol. 5, No. 5, 568-575, April 2011.
doi:10.1049/iet-map.2010.0472