Vol. 84
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-28
Modelling the Dielectric Properties of Cow's Raw Milk Under Vat Pasteurization
By
Progress In Electromagnetics Research M, Vol. 84, 157-166, 2019
Abstract
An efficient microwave milk pasteurization system requires a rigorous temperature dependent dielectric model of the milk, since the performance of milk pasteurization strongly depends on its dielectric properties. This paper describes the dielectric modelling of cows raw milk during batch (Vat) pasteurization which covers the frequencies from 0.2 GHz to 6 GHz. An open-ended coaxial sensor is used for the measurements of dielectric constant, loss factor, and ionic conductivity at temperature range of 25°C to 75°C with an interval of 5°C. Combinations of Cole-Davison and Debye equations are modified to fit the dielectric measurements. It was found that the measured dielectric constant decreased as the frequency increased, while the high temperature processed produce lower in a convergence manner toward 6 GHz. The loss factor exhibited high losses at higher temperature and lower frequencies, as well as converged at 1.9 GHz then diverged up to 6 GHz. Three relaxation processes are dominated at all temperature treatments within the frequency range. The relaxation time, τ, and the activation energy, Q, are modelled based on linear fitting of measured data according to Debye and Arrhenius approaches.
Citation
Suhail Najm Abdullah, You Kok Yeow, Nor Hisham Khamis, and Cheong Yew Chong, "Modelling the Dielectric Properties of Cow's Raw Milk Under Vat Pasteurization," Progress In Electromagnetics Research M, Vol. 84, 157-166, 2019.
doi:10.2528/PIERM19052202
References

1. Haug, A., A. T. Hostmark, and O. M. Harstad, "Bovine milk in human nutrition - A review," Lipids in Health and Disease, Vol. 6, No. 1, 25, Sep. 2007.
doi:10.1186/1476-511X-6-25

2. Bryan, F. L., "Epidemiology of milk-borne diseases," Journal of Food Protection, Vol. 46, No. 7, 637-649, Jul. 1983.
doi:10.4315/0362-028X-46.7.637

3. Bansal, B. and X. D. Chen, "A critical review of milk fouling in heat exchangers," Comprehensive Reviews in Food Science and Food Safety, Vol. 5, No. 2, 27-33, Apr. 2006.
doi:10.1111/j.1541-4337.2006.tb00080.x

4. Hamid, M. A. K., R. J. Boulanger, S. C. Tong, R. A. Gallop, and R. R. Pereira, "Microwave pasteurization of raw milk," Journal of Microwave Power, Vol. 4, No. 4, 272-275, Jan. 1969.
doi:10.1080/00222739.1969.11688733

5. Wang, Y., T. D. Wig, J. Tang, and L. M. Hallberg, "Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization," Journal of Food Engineering, Vol. 57, No. 3, 257-268, 2003.
doi:10.1016/S0260-8774(02)00306-0

6. Nunes, A. C., X. Bohigas, and J. Tejada, "Dielectric study of milk for frequencies between 1 and 20 GHz," Journal of Food Engineering, Vol. 76, No. 2, 250-255, 2006.
doi:10.1016/j.jfoodeng.2005.04.049

7. Mudgett, R. E., A. C. Smith, D. I. C. Wang, and S. A. Goldblith, "Prediction of dielectric properties in non-fat milk at frequencies and temperatures of interest in microwave processing," Journal of Food Science, Vol. 39, No. 1, 52-54, Jan. 1974.
doi:10.1111/j.1365-2621.1974.tb00985.x

8. Zhu, X., W. Guo, and Y. Jia, "Temperature-dependent dielectric properties of raw Cow's and Goat's milk from 10 to 4,500 MHz relevant to radio-frequency and microwave pasteurization process," Food and Bioprocess Technology, Vol. 7, No. 6, 1830-1839, Jun. 2014.
doi:10.1007/s11947-014-1255-4

9. Martins, C. P. C., R. N. Cavalcanti, S. M. Couto, J. Moraes, E. A. Esmerino, M. C. Silva, R. S. L. Raices, J. A. W. Gut, H. S. Ramaswamy, C. C. Tadini, et al. "Microwave processing: Current background and effects on the physicochemical and microbiological aspects of dairy products," Comprehensive Reviews in Food Science and Food Safety, Vol. 18, No. 1, 67-83, Wiley Online Library, 2019.
doi:10.1111/1541-4337.12409

10. Leite, J. A. S., V. S. Quintal, and C. C. Tadini, "Dielectric properties of infant formulae, human milk and whole and low-fat cow milk relevant for microwave heating," International Journal of Food Engineering, De Gruyter, 2019.

11. Salema, A. A., Y. K. Yeow, K. Ishaque, F. N. Ani, M. T. Afzal, and A. Hassan, "Dielectric properties and microwave heating of oil palm biomass and biochar," Industrial Crops and Products, Vol. 50, 366-374, 2013.
doi:10.1016/j.indcrop.2013.08.007

12. Nelson, S. O. and A. K. Datta, "Dielectric properties of food materials and electric field interactions," Handbook of Microwave Technology for Food Applications, 69-114, 2001.

13. You, K. Y., Z. Abbas, M. F. A. Malek, E. M. Cheng, and H. K. Mun, "Modeling of dielectric relaxation for lossy materials at microwave frequencies using polynomial approaches," Jurnal Teknologi, Vol. 58, No. 1, 2012.

14. Qian, F., J. Sun, D. Cao, Y. Tuo, S. Jiang, and G. Mu, "Experimental and modelling study of the denaturation of milk protein by heat treatment," Korean Journal for Food Science of Animal Resources, Vol. 37, No. 1, 44-51, 2017.
doi:10.5851/kosfa.2017.37.1.44

15. Zhu, X., W. Guo, Y. Jia, and F. Kang, "Dielectric properties of raw milk as functions of protein content and temperature," Food and Bioprocess Technology, Vol. 8, No. 3, 670-680, Mar. 2015.
doi:10.1007/s11947-014-1440-5

16. Herve, A. G., J. Tang, L. Luedecke, and H. Feng, "Dielectric properties of cottage cheese and surface treatment using microwaves," Journal of Food Engineering, Vol. 37, No. 4, 389-410, 1998.
doi:10.1016/S0260-8774(98)00102-2

17. Yeow, Y. K., Z. Abbas, K. Khalid, and M. Z. A. Rahman, "Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies," American Journal of Applied Sciences, Vol. 7, No. 2, 270-276, Feb. 2010.
doi:10.3844/ajassp.2010.270.276

18. Guetouache, M., Guessas, Bettache, Medjekal, and Samir, "Composition and nutritional value of raw milk," Issues in Biological Sciences and Pharmaceutical Research, Vol. 2, No. 10, 115-122, 2014.

19. Liebe, H. J., G. A. Hufford, and T. Manabe, "A model for the complex permittivity of water at frequencies below 1 THz," International Journal of Infrared and Millimeter Waves, Vol. 12, No. 7, 659-675, Jul. 1991.
doi:10.1007/BF01008897

20. Makino, T. and S.-I. Taneya, "Dielectric properties of powdered food," The Japan Society of Applied Physics, Vol. 32, No. 1, 10-16, Jan. 1963.

21. Hendrickx, M., Z. Weng, G. Maesmans, and P. Tobback, "Validation of a time-temperature-integrator for thermal processing of foods under pasteurization conditions," International Journal of Food Science & Technology, Vol. 27, No. 1, 21-31, 1992.
doi:10.1111/j.1365-2621.1992.tb01174.x