Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq

Main Article Content

Hasanain A.J. Gharban
Afaf A. Yousif

Abstract

This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnetii IQ-No.6; and then recorded in the National Center for Biotechnology Information (NCBI) under an accession numbers of MN473204.1 and MN473205.1. Comparative identity of the local strains with NCBI-BLAST strains/isolates revealed 97% similarity and 0.1-0.6% of total genetic mutations/changes. NCBI-BLAST Homology Sequence reported high significant identity (P<0.05) between the local, C. burnetii IQ-No.5 and C. burnetii IQ-No.6; strains and C. burnetii 3345937 (CP014354.1) Netherlands isolate at 99.10% and 99.06%, respectively. The current study concluded that the percentage of infected cows with coxiellosis is relatively high, and Coxiella should be listed as abortive pathogen. Therefore, additional studies should be performed including different animals, samples, and regions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq. (2020). The Iraqi Journal of Veterinary Medicine, 44((E0), 42-50. https://doi.org/10.30539/ijvm.v44i(E0).1020
Section
Articles

How to Cite

Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq. (2020). The Iraqi Journal of Veterinary Medicine, 44((E0), 42-50. https://doi.org/10.30539/ijvm.v44i(E0).1020

References

Mori M, Mertens K, Cutler SJ, Santos AS. Critical aspects for detection of Coxiella burnetii. Vector Borne Zoonotic Dis. 2017; 17(1): 33-41.

Keshavamurthy R, Singh BB, Kalambhe DG, Aulakh RS, Dhand NK. Prevalence of Coxiella burnetii in cattle and buffalo populations in Punjab, India. Prev Vet Med. 2019; 166(1): 16-20.

Pandit P, Hoch T, Ezanno P, Beaudeau F, Vergu E. Spread of Coxiella burnetii between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade. Vet Res. 2016; 47(1): 1-16.

Lee KH, Lee HK, Baek KH, Oem JG, Kim HY. Abortion caused by Coxiella burnetii in a cow and oat in Korea. J Vet Sci Tech. 2018; 9(1): 1-3.

Mohammed OB, Jarelnabi AA, Aljumaah RS, Alshaikh MA, Bakhiet AO, Omer SA, Hussein MF. Coxiella burnetii, the causative agent of Q fever in Saudi Arabia: molecular detection from camel and other domestic livestock. Asian Pac J Trop Med. 2014; 7(9): 715-9.

Courcoul A, Monod H, Nielen M, Klinkenberg D, Hogerwerf L, Beaudeau F, Vergu E. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis. J Theor Biol. 2011; 284(1): 130-41.

De Biase D, Costagliola A, Del Piero F, Di Palo R, Coronati D, Galiero G, Raoult D. Coxiella burnetii in infertile dairy cattle with chronic endometritis. Vet Pathol. 2018; 55(4): 539-42.

Duron O, Noel V, Mccoy KD, Sidi-Boumedine K, Morel O, Arnathau C. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog. 2015; 11(5): 1-23.

Betancur CA, Rubio M, Barrera J, Bedoya JC. Seroprevalence of Coxiella burnetii in cattle farm workers in the department of Antioquia. Acta Med Colomb. 2015; 40(1): 20-3.

Barandika JF, Alvarez-Alonso R, Jado I, Hurtado A, Garcia-Perez AL. Viable Coxiella burnetii in hard cheeses made with unpasteurized milk. Int J Food Microbiol. 2019; 303 (1): 42-5.

Guatteo R, Seegers H, Taurel AF, Joly A, Beaudeau F. Prevalence of Coxiella burnetii infection in domestic ruminants: a critical review. Vet Microbiol. 2011; 149(1-2): 1-16.

Melenotte C, Million M, Raoult D. New insights in Coxiella burnetii infection: diagnosis and therapeutic update. Expert Rev Anti Infect Ther. 2020; 18(1): 75-86.

Francis R, Mioulane M, Le Bideau M, Mati MC, Fournier PE, Raoult D, La Scola B. High Content Screening, a reliable system for Coxiella burnetii isolation from clinical samples. bioRxivorg. 2019; 4 (1): 1-34.

Anderson A, Bijlmer H, Fournier PE, Graves S, Hartzell J, Kersh GJ, Nicholson WL. Diagnosis and management of Q fever-United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Recomm Rep. 2013; 62(3): 1-29.

Plummer PJ, McClure JT, Menzies P, Morley PS, Van den Brom R, Van Metre DC. Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement. J Vet Intern Med. 2018; 32(5): 1481-94.

Capuano F, Proroga YR, Mancusi A, Perugini AG, Berri M. Evaluation of DNA preparation methods combined with different PCR-based assays for Coxiella burnetii detection in milk. Large Anim Rev. 2016; 22 (1): 59-62.

Borji S, Jamshidi A, Khanzadi S, Razmyar J. Detection of Coxiella burnetii and sequencing the IS1111 gene fragment in bulk tank milk of dairy herds. Iran J Vet Sci Technol. 2015; 6(2): 21-8.

Saglam AG, Sahin M. Coxiella burnetii in samples from cattle herds and sheep flocks in the Kars region of Turkey. Vet Med. 2016; 61 (1): 17-22.

George D, Mallery P. SPSSR for Windows R step by step: A simple guide and reference. 4th ed. Boston: Allyn and Bacon; 2003. P. 35-79.

Neyeloff JL, Fuchs SC, Moreira LB. Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res Notes. 2012; 5(1), 1-6.

Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, Njenga MK. Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya. The Am J Trop Med Hyg. 2013; 88(3): 513-8.

Schimmer B, Schotten N, Van Engelen E, Schneeberger PM, Van Duijnhoven YTHP. Coxiella burnetii seroprevalence and risk for humans on dairy cattle farms, the Netherlands, 2010.2011. Emerg Infect Dis. 2014; 20(3): 417-25.

Abed J, Salih AA, Abd-ul-husien A. Seroprevalence Coxiella burnetii among cows and sheep in Thi-Qar Province/Iraq. Al-Qadisiyah J Vet Med Sci. 2010; 9(2): 26-30.

Cekani M, Papa A, Kota M, Velo E, Berxholi K. Report of a serological study of Coxiella burnetii in domestic animals in Albania. Vet J. 2008; 175(2): 276-8.

Bottcher J, Vossen A, Janowetz B, Gangl A, Randt A, Meier N. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Vet Microbiol. 2011; 151(3-4): 291-300.

Cooper A, Hedlefs R, McGowan M, Ketheesan N, Govan B. Serological evidence of Coxiella burnetii infection in beef cattle in Queensland. Aust Vet J. 2011; 89(7), 260-4.

Klemmer J, Njeru J, Emam A, El-Sayed A, Moawad AA, Henning K, El-Diasty MM. Q fever in Egypt: Epidemiological survey of Coxiella burnetii specific antibodies in cattle, buffaloes, sheep, goats and camels. PloS ONE. 2018; 13(2): 1-12.

Esmaeili S, Pourhossein B, Gouya MM, Amiri FB, Mostafavi E. Seroepidemiological survey of Q fever and brucellosis in Kurdistan Province, western Iran. Vector Borne Zoonotic Dis. 2014; 14(1): 41-5.

Rahimi E, Doosti A, Ameri M, Kabiri E, Sharifian B. Detection of Coxiella burnetii by nested PCR in bulk milk samples from dairy bovine, ovine, and caprine herds in Iran. Zoonoses Public Health. 2010; 57(7]8): e38-e41.

Parisi A, Fraccalvieri R, Cafiero M, Miccolupo A, Padalino I, Montagna C, Sottili R. Diagnosis of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet Microbiol. 2006; 118(1-2): 101-6.

Muskens J, Van Engelen E, Van Maanen C, Bartels C, Lam TM. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Vet Rec. 2011; 168 (1): 79-84.

Astobiza I, Ruiz-Fons F, Pinero A, Barandika JF, Hurtado A, Garcia-Perez AL. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J Dairy Sci. 2012; 95(4): 1632-8.

Kargar M, Rashidi A, Doosti A, Najafi A, Ghorbani-Dalini S. The sensitivity of the PCR method for detection of Coxiella burnetii in the milk samples. Zahedan J Res Med Sci. 2015; 17(6): e988-e992.

Marushchak LV, Deriabin ON, Dedok L, Volosyanko E, Garcavenko T. Development of a PCR Kit for Detection of Coxiella burnetii in Ukraine. Vector Borne Zoonotic Dis. 2019; 20 (2): 100-6.

Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, Morimoto S. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis. J Nat Med. 2018; 72(1): 32-42.

Garibyan L, Avashia N. Research techniques made simple: polymerase chain reaction (PCR). J Investig Dermatol. 2013; 133(3): e1-e8.

Nusinovici S, Hoch T, Widgren S, Joly A, Lindberg A, Beaudeau F. Relative contributions of neighbourhood and animal movements to Coxiella burnetii infection in dairy cattle herds. Geospat Health. 2013; 8(2): 471-7.

Van den Brom R, Van Engelen E, Vos J, Moll L, Roest HJ, Vellema P. Detection of Coxiella burnetii in the bulk tank milk from a farm with vaccinated goats, by using a specific PCR technique. Small Rumin Res. 2013; 110 (2-3): 150-4.

Seo MG, Ouh IO, Lee SH, Kim JW, Rhee MH, Kwon OD, Kwak D. Prevalence of Coxiella burnetii in cattle at South Korean national breeding stock farms. PloS ONE. 2017; 12(5): 1-10.

Khoo JJ, Lim FS, Chen F, Phoon WH, Khor CS, Pike BL, AbuBakar S. Coxiella detection in ticks from wildlife and livestock in Malaysia. Vector Borne Zoonotic Dis. 2016; 16(12): 744-51.

Knap N, .ele D, Bi.kup UG, Av.i.-.upanc T, Vengu.t G. The prevalence of Coxiella burnetii in ticks and animals in Slovenia. BMC Vet Res. 2019; 15(1): 368-73.

Mediannikov O, Fenollar F, Socolovschi, C, Diatta G, Bassene H, Molez JF, Raoult D. Coxiella burnetii in hmans and ticks in rural Senegal. PLoS Negl Trop Dis. 2010; 4(4): 654-61.

Park JH, Chu H, Yoo SJ, Hwang KJ, Lim HS. Serologic survey and risk factors for Coxiella burnetii infection among dairy cattle farmers in Korea. J Korean Med Sci. 2018; 33(39): 245-54.

Jensen TK, Montgomery DL, Jaeger PT, Lindhardt T, Agerholm JS, Bille-Hansen VI, Boye M. Application of fluorescent in situ hybridisation for demonstration of Coxiella burnetii in placentas from ruminant abortions. APMIS. 2007; 115(4): 347-53.

Muskens J, Wouda W, von Bannisseht-Wijsmuller T, Van Maanen C. Prevalence of Coxiella burnetii infections in aborted fetuses and stillborn calves. Vet Rec. 2012; 170(10): 260-6.

Ahmme MA, Amen AM, Ghaffar NM, Omar LT. Seroprevalence of cattle brucellosis by rosebengal and ELISA tests in different villages of Duhok province. Iraqi J Vet Med. 2011; 35(1): 71-5.

Al-Tae AH, Al-Samarrae EA. Detection of Brucella antibodies of sheep in Al-Anbar province by using some serological tests. Iraqi J Vet Med. 2013; 37(1): 7-12.

Ghasemi A, Hajinezhad MR, Esmaeili S, Mostafavi E. Seroprevalence of Q Fever and Brucellosis in Domestic and Imported Cattle of Southeastern Iran. J Med Microbiol Infect Dis. 2018; 6(2): 48-52.

Changoluisa D, Rivera-Olivero IA, Echeverria G, Garcia-Bereguiain MA, de Waard JH. Serology for Neosporosis, Q fever and Brucellosis to assess the cause of abortion in two dairy cattle herds in Ecuador. BMC Vet Res. 2019; 15(1): 194-9.

Lindahl-Rajala E, Hoffman T, Fretin D, Godfroid J, Sattorov N, Boqvist S, Magnusson U. Detection and characterization of Brucella spp. in bovine milk in small-scale urban and peri-urban farming in Tajikistan. PLoS Negl Trop Dis. 2017; 11(3): 1-12.

Kuley R, Smith HE, Janse I, Harders FL, Baas F, Schijlen E, Bossers A. First complete genome sequence of the Dutch veterinary Coxiella burnetii strain NL3262, originating from the largest global Q fever outbreak, and draft genome sequence of its epidemiologically linked chronic human isolate NLhu3345937. Genome Announc. 2016; 4(2): e5-e16.

Similar Articles

You may also start an advanced similarity search for this article.