Skip to main content
Log in

On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives

  • Differential Equations
  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:

$$\begin{cases}\left[a+b\left(\int\limits_{\mathbb{R}}(|u|^{2}+|{{}_{-\infty}}D_{x}^{\beta}u|^{2})dx\right)^{\varrho-1}\right]({{}_{x}}D_{\infty}^{\beta}({{}_{-\infty}}D_{x}^{\beta}u)+u)=|u|^{2^{*}_{\beta}-2}u,in~\mathbb{R},\\ u\in\mathbb{I}_{-}^{\beta}(\mathbb{R}),\end{cases}$$

where \(\beta\in(0,\frac{1}{2})\), \(\varrho>1\), \({{}_{-\infty}}D_{x}^{\beta}u(\cdot)\), and \({{}_{x}}D_{\infty}^{\beta}u(\cdot)\) denote the left and right Liouville–Weyl fractional derivatives, \(2_{\beta}^{*}=\frac{2}{1-2\beta}\) is fractional critical Sobolev exponent \(a\geq 0\) and \(b>0\). Under suitable values of the parameters \(\varrho\), \(a\) and \(b\), we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, Vol. 2004 (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-14574-2

  2. Theory and Applications of Fractional Differential Equations, Ed. by A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, North-Holland Mathematics Studies, Vol. 204 (Elsevier, Amsterdam, 2006). https://doi.org/10.1016/s0304-0208(06)80001-0

  3. J. Vanterler da C. Sousa and E. Capelas de Oliveira, ‘‘On the \(\psi\)-Hilfer fractional derivative,’’ Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018). https://doi.org/10.1016/j.cnsns.2018.01.005

    Article  MathSciNet  Google Scholar 

  4. J. T. Machado, V. Kiryakova, and F. Mainardi, ‘‘Recent history of fractional calculus,’’ Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011). https://doi.org/10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  Google Scholar 

  5. R. Almeida, ‘‘A Caputo fractional derivative of a function with respect to another function,’’ Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017). https://doi.org/10.1016/j.cnsns.2016.09.006

    Article  MathSciNet  Google Scholar 

  6. F. Jarad and T. Abdeljawad, ‘‘Generalized fractional derivatives and Laplace transform,’’ Discrete Contin. Dyn. Syst. S 13, 709–722 (2020). https://doi.org/10.3934/dcdss.2020039

    Article  MathSciNet  Google Scholar 

  7. F. Jarad, T. Abdeljawad, and D. Baleanu, ‘‘Caputo-type modification of the Hadamard fractional derivatives,’’ Adv. Difference Equations 2012, 142 (2012). https://doi.org/10.1186/1687-1847-2012-142

    Article  MathSciNet  Google Scholar 

  8. Yu. Luchko and J. Trujillo, ‘‘Caputo-type modification of the Erdélyi–Kober fractional derivative,’’ Fractional Calculus Appl. Anal. 10, 249–267 (2007). http://eudml.org/doc/11329.

  9. A. A. Nori, N. Nyamoradi, and N. Eghbal, ‘‘Multiplicity of solutions for Kirchhoff fractional differential equations involving the Liouville–Weyl fractional derivatives,’’ J. Contemp. Math. Anal. 55, 13–31 (2020). https://doi.org/10.3103/S1068362320010069

    Article  MathSciNet  Google Scholar 

  10. D. S. Oliveira, J. Vanterler da C. Sousa, and G. S. F. Frederico, ‘‘Pseudo-fractional operators of variable order and applications,’’ Soft Comput. 26, 4587–4605 (2022). https://doi.org/10.1007/s00500-022-06945-9

    Article  Google Scholar 

  11. D. S. Oliveira and E. Capelas De Oliveira, ‘‘On a Caputo-type fractional derivative,’’ Adv. Pure Appl. Math. 10, 81–91 (2019). https://doi.org/10.1515/apam-2017-0068

    Article  MathSciNet  Google Scholar 

  12. D. S. Oliveira and E. C. De Oliveira, ‘‘Hilfer–Katugampola fractional derivatives,’’ Comput. Appl. Math. 37, 3672–3690 (2018). https://doi.org/10.1007/s40314-017-0536-8

    Article  MathSciNet  Google Scholar 

  13. D. Tavares, R. Almeida, and D. F. M. Torres, ‘‘Caputo derivatives of fractional variable order: Numerical approximations,’’ Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016). https://doi.org/10.1016/j.cnsns.2015.10.027

    Article  MathSciNet  Google Scholar 

  14. Fractional Calculus in Medical and Health Science, Ed. by D. Kumar and J. Singh (CRC Press, Boca Raton, Fla., 2020). https://doi.org/10.1201/9780429340567

    Book  Google Scholar 

  15. R. L. Magin, ‘‘Fractional calculus in bioengineering, Part 2,’’ Crit. Rev. Biomed. Eng. 32, 105–194 (2004). https://doi.org/10.1615/critrevbiomedeng.v32.i2.10

    Article  Google Scholar 

  16. V. E. Tarasov, Applications in Physics, Part B, Handbook of Fractional Calculus with Applications, Vol. 5 (De Gruyter, 2019). https://doi.org/10.1515/9783110571721

  17. J. T. Machado, F. Mainardi, and V. Kiryakova, ‘‘Fractional calculus: Quo vadimus? (Where are we Going?),’’ Fractional Calculus Appl. Anal. 18, 495–526 (2015). https://doi.org/10.1515/fca-2015-0031

    Article  MathSciNet  Google Scholar 

  18. D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, ‘‘Fractional dispersion, Lévy motion, and the MADE tracer tests,’’ in Dispersion in Heterogeneous Geological Formations, Ed. by B. Berkowitz (Springer, Dordrecht, 2001), pp. 211–240. https://doi.org/10.1007/978-94-017-1278-1_11

    Book  Google Scholar 

  19. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, ‘‘Application of a fractional advection-dispersion equation,’’ Water Resour. Res. 36, 1403–1412 (2000). https://doi.org/10.1029/2000wr900031

    Article  Google Scholar 

  20. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, ‘‘The fractional-order governing equation of Lévy motion,’’ Water Resour. Res. 36, 1413–1423 (2000). https://doi.org/10.1029/2000wr900032

    Article  Google Scholar 

  21. C. Torres, ‘‘Ground state solution for differential equations with left and right fractional derivatives,’’ Math. Methods Appl. Sci. 38, 5063–5073 (2015). https://doi.org/10.1002/mma.3426

    Article  MathSciNet  Google Scholar 

  22. C. Torres Ledesma, ‘‘Existence and symmetric result for Liouville–Weyl fractional nonlinear Schrödinger equation,’’ Commun. Nonlinear Sci. Numer. Simul. 27, 314–327 (2015). https://doi.org/10.1016/j.cnsns.2015.02.019

    Article  MathSciNet  Google Scholar 

  23. C. E. Torres Ledesma, ‘‘Fractional Hamiltonian systems with vanishing potentials,’’ Prog. Fractional Differentiation Appl. 8, 415–433 (2022). https://doi.org/10.18576/pfda/080307

    Article  Google Scholar 

  24. C. E. Torres Ledesma, H. C. Gutierrez, J. A. Rodrìguez, and Z. Zhang, ‘‘Evennon-increasing solution for a Schrödinger type problem with Liouville–Weyl fractional derivative,’’ Computat. Appl. Math. 41, 404 (2022). https://doi.org/10.1007/s40314-022-02124-6

  25. N. Nyamoradi and Yo. Zhou, ‘‘Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory,’’ Topol. Methods Nonlinear Anal. 46, 1 (2015). https://doi.org/10.12775/tmna.2015.061

    Article  MathSciNet  Google Scholar 

  26. N. Nyamoradi, Y. Zhou, E. Tayyebi, B. Ahmad, and A. Alsaedi, ‘‘Nontrivial solutions for time fractional nonlinear Schrödinger–Kirchhoff type equations,’’ Discrete Dyn. Nat. Soc. 2017, 9281049 (2017). https://doi.org/10.1155/2017/9281049

  27. E. Tayyebi and N. Nyamoradi, ‘‘Existence of nontrivial solutions for Kirchhoff type fractional differential equations with Liouville–Weyl fractional derivatives,’’ J. Nonlinear Funct. Anal. 2018, 19 (2018). https://doi.org/10.23952/jnfa.2018.19

    Article  Google Scholar 

  28. A. A. Nori, N. Nyamoradi, and N. Eghbali, ‘‘Multiplicity of solutions for Kirchhoff fractional differential equations involving the Liouville–Weyl fractional derivatives,’’ J. Contemp. Math. Anal. 55 (1), 13–31 (2020).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Nyamoradi or C. E. Torres Ledesma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyamoradi, N., Torres Ledesma, C.E. On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives. J. Contemp. Mathemat. Anal. 59, 88–95 (2024). https://doi.org/10.3103/S1068362324700055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362324700055

Keywords:

Navigation