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ABSTRACT

Background: Globally, pain and pain-related diseases are the leading causes of disability and disease burden. In the United States, pain is the most common reason
patients consult primary care providers. An estimated 100 million people live with chronic or recurrent pain. Existing pharmacological treatments for pain include
anti-inflammatory agents, opioids, and other oral and topical analgesics. Many of these have been associated with troublesome and potentially harmful adverse
effects. Understanding the complex pain neuromatrix may help in identifying alternative, non-invasive strategies and treatment approaches to address pain severity,
interference, and improve patient outcomes.

The neuromatrix of pain is a network of neuronal pathways and circuits responding to sensory (nociceptive) stimulation. Research has suggested that the output
patterns of the body-self neuromatrix are responsible for causing or triggering perceptual, homeostatic, and behavioral programs following traumatic injury, other
pathology, or chronic stress. As such, pain can be considered a product of the output of a widely distributed neural network within the brain instead of a sequential
result of sensory inputs triggered by injury, inflammation, or other pathology. For over a century, the Brodmann Areas remain the most widely known and frequently
cited cytoarchitectural organization of the human cortex. Certain Brodmann areas of the brain have been associated with the current understanding of the neuromatrix
of pain. The areas expands well beyond the thalamus and anterior cingulate, and primary (S1) and secondary (S2) somatosensory cortices to include the midbrain
region of the periaqueductal gray (PAG) and the lenticular complex as well as the insula, orbitofrontal (Brodmann's area [BA] 11, 47), prefrontal (BA 9, 10, 44-46),
motor (BA 6, Supplementary motor area, and M1), inferior parietal (BA 39, 40), and anterior cingulate (BA 24, 25) cortices (ACCs). Treatments that are non-invasive
and non-pharmacological and target both central and peripheral nociceptive mechanisms that are identified as having an impact on the Brodmann areas associated
with the neuromatrix of pain may potentially be considered a beneficial pain management option for patients.

Haptic vibrotactile trigger technology targets the nociceptive pathways and is theorized to disrupt the neuromatrix of pain. The technology has been incorporated into
non-pharmacological patches and other non-invasive routes of delivery such as apparel (socks), braces, wristbands, and compression sleeves.

The purpose of this minimal risk study was to compare electroencephalogram (EEG) patterns in areas of the brain that have been associated with the neuromatrix for pain
in subjects wearing socks that were embedded with haptic vibrotactile trigger technology with those patients that wore socks that were not embedded with the technology.

Methods: This IRB-approved study compared electroencephalogram (EEG) patterns in subjects wearing cloth socks embedded with haptic vibrotactile trigger
technology (Superneuro VIT Enhanced Socks (Srysty Holding Co., Toronto, Canada) with those patients that wore cloth socks that were not embedded with the
technology. Baseline EEG data from 19 scalp locations were recorded in sixty (60) adult subjects (36 females and 24 males) ranging from ages 14 to 83 wearing
standard store-purchased cloth socks on their feet. The subject’s standard socks were then removed and replaced with the Superneuro VIT enhanced socks on the
subject s feet. A second EEG recording was then obtained. Both eyes-closed and eyes-open data were recorded.

Results: The results showed statistically significant t-test differences (P < .01) in 59 out of 60 subjects in absolute power and 60 out of 60 subjects showed statistically
significant differences in coherence and phase difference. The largest differences were in the alphal and beta? frequency bands and especially in central scalp locations.
Paired t-tests of LORETA current source densities between socks on and socks off demonstrated statistically significant differences in 60 out of 60 subjects. The largest effects
of Superneuro VTT enhanced socks on were on the medial bank of the somatosensory cortex as well as in the left frontal lobes in the theta and alpha frequency.

Conclusions: Study results indicate that foot stimulation with embedded haptic vibrotactile trigger technology showed significant modulation in the Brodmann areas that
have been shown to be associated with the neuromatrix for pain in the human brain. Further research is suggested to evaluate if this technology has a positive impact on pain
severity, pain interference, and quality of life and to be considered as a potentially beneficial pain management strategy and as part of a multi-modal treatment approach.
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Introduction

Globally, pain and pain-related diseases are the leading causes of
disability and disease burden. In the United States, pain is the most
common reason patients consult primary care providers and an
estimated 100 million people live with chronic or recurrent pain

[1].

Existing treatments for pain include non-pharmacological and
pharmacological approaches [2-5]. Some of these treatments
can be non-invasive. Increased prescribing of pharmacological
treatments, including opioids and non-opioid drugs, such as
NSAIDS, have occurred over the last decade [6-8]. Many of
these treatments have known side effects, including GI toxicity,
bleeding, and the potential for addiction, abuse, and death [9-12].
There has been an effort to identify alternative treatments that are
targeted and non-invasive that would be part of a multi-modal
approach that would lead to a reduction in dangerous side effects
[13]. Guidelines for pain management from several Medical
Associations, including the American Academy of Family
Physicians (AAFP), the American College of Physicians (ACP),
and the American College of Rheumatology (ACR), recommend
a multi-modal approach to address pain that includes non-invasive
and non-pharmacological therapies as a first line treatment before
consideration of other approaches [14,15].

Understanding the mechanisms of pain has led to advancements of
new technologies and new routes of delivering these technologies
with the objective to decrease side effects and improve patient
outcomes. Non-invasive and non-pharmacological approaches
have been shown safe and effective for chronic pain patients
and have the potential to minimize side effects associated with
traditional medication or interventional therapies [16].

Over the past several years, researchers have developed an
understanding of the Neuromatrix Theory of Pain (NTP) through a
broad base of imaging studies and related theories of how different
brain regions interact and sense pain.

Acute pain is a noxious bodily sensation occurring as part of the
brain’s passive response to tissue damage, the neural mechanisms
of which have been well characterized. Not all pain sensations are
the result of ongoing physical trauma despite the perception of
pain, as in the cases of phantom limb, chronic pain, or emotional
pain [17]. Whether acute or chronic, the body’s ability to perceive
pain is the result of communicating with the peripheral (PNS) and
central nervous systems (CNS). Phantom limb and chronic pain
states, which may involve aberrant communication between the
PNS and CNS, remain poorly understood [18]. One reason for this
is that chronic pain perception appears to involve multiple neural
pathways in addition to those associated with acute pain [18,19].
These networks involved in the perception of painful sensations,

as well as their communication and coordination between the CNS
and PNS, are referred to broadly as the “neuromatrix”, which is the
basis for the NTP [17].

The NTP was first proposed by Ronald Melzack, who hypothesized
that networks of neurons communicating in “large loops”, or
through continuous cyclical processing, connect specific regions
of the brain with the PNS during sensory processing [17]. Melzack
envisioned 3 distinct looping pathways. One follows a traditional
sensory pathway, with neural projections routed through the
thalamus. Projections in the second loop follow a path through
the brainstem and parts of the limbic system. In the third loop,
pathways are routed through different Brodmann Areas (BA),
particularly the somatosensory cortex. These proposed loops were
meant to explain the cognitive, emotional, and motor modalities
through which humans experience sensations, particularly pain
[17,20].

The neuromatrix incorporates sensory inputs from the PNS and
uses this input to create different output responses. These patterns
of sensation and response are encoded in the matrix and called
“neurosignatures”. These neurosignatures serve a dual purpose: to
process and respond to sensory stimuli, and to continuously monitor
the state of the body and determine if it is intact. In either case,
while the original activities and neural outputs of a neuromatrix
are guided by an individual’s genetics, this changes over time
with different sensory experiences, illness, injury, chronic stress,
and other factors [17,18]. In the context of pain, a neurosignature
pattern can be elicited by outward noxious stimuli. However,
pain-associated neurosignatures can also occur independently of
external stimuli, as described above in the case of phantom limb
and chronic pain [17].

The NTP posits that these different neurosignatures, and the ways
they are generated, are the result of complex neural networks.
In other words, the sensation of pain is the result of internal
mechanisms [17,20]. Since the publication of Melzack’s proposed
theory, numerous studies have examined the brain’s response to
pain harnessing the power of modern imaging techniques like
PET and fMRI. The regional brain activation documented in these
studies largely aligns with what Melzack proposed [20]. That said,
the brain regions found to be activated during painful or noxious
stimuli in these reports are encompass more of the brain than
Melzack assumed, and it appears that activation of these networks
alone are not the source of pain perception [20,21]. An early
review probing the functionality of the NTP focused on data from
PET and fMRI studies that explored regional differences in brain
activation during various noxious stimuli. The general conclusion
of the review is that many more brain regions are involved in
the processing of pain than originally anticipated [20]. Melzack
originally implicated general regions: the thalamus, anterior
cingulate, and primary (S1) and secondary (S2) somatosensory
cortices [17]. This review noted that findings from the more than
30 included studies largely agreed with the original proposed brain
areas. What differed was that the reported brain regions were much
more regionally specific and spread across a larger area of the
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cortex. In addition to the thalamus, several additional regions of the
midbrain were identified, including the insula, lenticular complex,
and periaqueductal gray (PAG). Additional cortical regions and
associated Brodmann areas (BA) were also noted, including parts
of the prefrontal cortex (BA 9, 10, 44-46), orbitofrontal cortex
(BA 11,47), motor cortex (BA 6, Supplementary motor area, M1),
and the inferior parietal cortex (BA 39, 40). The anterior cingulate
was also observed to be more regionalized than previously thought
(BA 24, 25) [20]. This collection of findings illustrates a broad
cortical response to pain perception.

It was recently discovered that when a somatosensory pattern of
stimulation is applied to the metatarsal region of the foot then
improved balance and movement coordination often occurred
(Dhaliwal, 2018) [22]. As a consequence, the somatosensory
pattern of stimulation was woven or molded into socks and worn
on one’s feet to better facilitate the effects of the somatosensory
stimulation of the metatarsal region of the bottom of the feet on the
peripheral and central nervous system. The purpose of this study
was to explore the effects on the human electroencephalogram
(EEG) when subjects place specially designed socks that provide
tactile pattern pressure on the metatarsal region of the human foot.

Methods

Study Design

This study was an Institutional Review Board-approved Study
aimed at comparing electroencephalogram (EEG) patterns in
subjects wearing cloth socks embedded with haptic vibrotactile
trigger technology (Superneuro VTT Enhanced Socks (Srysty
Holding Co., Toronto, Canada) (see Photos 1 and 2) with those
patients that wore cloth socks that were not embedded with the
technology. The electroencephalogram (EEG) was recorded from
19 scalp locations from 60 subjects ranging in age from 14 years to
83 years (Females = 36, males = 24). An approximate five-minute
baseline EEG was recorded with subjects wearing standard store
purchased socks on their feet. The subject’s standard socks were
removed and the Superneuro VIT Enhanced Socks were placed
on the subject’s feet and a second EEG recording was obtained.
Both eyes-closed and eyes-open conditions were recorded. A
FFT auto and cross-spectral power analysis of the surface EEG
was conducted from 1 Hz to 50 Hz. The variables were absolute
power EEG in 1 Hz increments and coherence and phase
differences in 10 frequency bands (delta, theta, alphal, alpha2,
betal, beta2, beta3 and hibeta). Paired t-tests between the
standard socks and Superneuro VTT pattern socks conditions
were computed for each subject for all EEG measures as well
as group paired t-tests.

The study protocol was approved by an institutional review board
and was performed in full accordance with the rules of the Health
Insurance Portability and Accountability Act of 1996 (HIPAA) and
the principles of the declaration of Helsinki and the international
council of Harmonisation/GCP. All patients gave informed and
written consent.

Haptic Vibrotactile Trigger Technology Intervention

Photo 1: The Superneuro VTT enhanced sock.

Photo 2: The Superneuro VTT enhanced sock

Study Procedures and Assessments

EEG Recording

The Wearable Sensing DSI-24 dry amplifier system was used to
amplify and digitize the EEG recorded from 19 scalp electrodes
according to the International 10/20 electrode locations.
Approximately 2 to 5 minutes of EEG was recorded in the eyes
closed condition and the eyes open condition with no socks on the
subject’s feet. A second 2-to-5-minute recording in the eyes closed
and eye open condition was recorded after placing the Superneuro
VTT enhanced socks on each subject’s feet.
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Power Spectral Analyses

Each EEG record was visually examined and manual deselection
of segments containing artifact of any type were deleted from the
record. Split-half reliability and test re-test reliability measures of
the artifact free data were computed using the Neuroguide software
program (NeuroGuide, v2.9.9). Split-half reliability tests were
conducted on the edited artifact free EEG segments and records
with > 90% reliability were entered into the spectral analyses.
A Fast Fourier transform (FFT) auto-spectral and cross-spectral
analysis was computed on 2 second epochs thus yielding a 0.5 Hz
frequency resolution over the frequency range from 0 to 50 Hz for
each epoch. A 75% sliding window method was used to compute
the FFT in which successive two-second epochs (i.e., 256 points)
were overlapped by 500 millisecond steps (64 points) in order to
minimize the effects of the FFT windowing procedure.

Surface EEG Coherence

The cross-spectrum was used to compute EEG coherence and
phase differences in ten frequency bands: Delta (1 to 4.0 Hz), theta
(4 - 8 Hz), alpha (8 - 12 Hz), beta broad (12 - 25 Hz), beta 1 (12 -
15 Hz), beta 2 (15 - 18 Hz), beta 3 (18 - 25 Hz) and hi-beta (25 - 30
Hz). Coherence is a measure of the consistency of the analytical
phase differences over some interval of time, is equivalent to a
squared correlation coefficient, and is dependent on the number
of degrees of freedom used to estimate the consistency of the
phase differences. When the phase difference in successive epochs
is constant then coherence = 1 and when phase differences are
random then coherence = 0. Coherence is mathematically defined

aSi2 i M
()= G.(NG,())

where G, () is the cross-power spectral density and G_ (f)
and G, (f) are the respective autopower spectral densities. The
computational procedure to obtain coherence involved first
computing the power spectra for x and y and then computing the
cross-spectra. Since complex analyses are involved, this produced
the average cospectrum (‘r’ for real) and quadspectrum (‘q’ for
imaginary). Then coherence was computed as:

>, +a,}

1—\2 = N
«(f) 36.G,

LORETA Current Density

J =TeS LORETA is a distributed EEG inverse solution where
the currents at 3- dimensional gray matter voxels J are a linear
combination of the signal S recorded at a scalp electrode:

Where T is a minimum norm 3-dimensional matrix of 2,394 gray
matter voxels with X, y and z coordinates in a generalized inverse
that weights the solution to sources that are synchronous in local
volumes or regions using the 3-dimensional Laplacian Operator
(Pasqual-Marqui et al., 1994; Pasqual-Marqui, 1999). The T
matrix is mathematically defined as:

T= {inv(WB' B W)} K' {pinv(WB' BW)K"}

Where B is the discrete Laplacian Operator and W is a weighting
matrix (inv indicates inverse) and pinv(X) is the Moore-Penrouse
pseudoinverse of X (Menke, 1984).

The Talairach Atlas coordinates of the Montreal Neurological
Institute’s MRI average of 305 brains (Lancaster et al., 2000;
Pascual-Marqui, 1999) and the linkage to standard anatomical
7mm x 7mm x 7 mm voxels each with a distinct Talairach
Atlas Coordinate. Groups of voxels are also defined by the clear
anatomical landmarks established by von Brodmann in 1909 and
referred to as Brodmann areas. The resultant [ ] 8 4 + G = N xx
ywNxyxyxy GGrqf22()J=T¢e+ST={inv(WB'BW)}
K'{pinv(WB'BW)K'} 6 current source vector at each voxel was
computed as the square root of the sum of the squares for the x,
y and z source moments for each 0.5Hz frequency band. In order
to reduce the number of variables, adjacent frequency 0.5 Hz bins
were averaged to produce nine different frequency bands: delta
(1-4 Hz); theta (4-7 Hz); alphal (8-10 Hz); alpha2 (10-12 Hz);
betal (12-15 Hz); beta2 (15-18 Hz); beta3 (18-25 Hz) and hi-beta
(25-30 Hz) for each of the 2,394 gray matter voxels.

Statistical Analysis

For all variables, descriptive statistics were calculated, including
frequencies and percent for categorical variables and means with
standard deviation (SD) for continuous variables. The maximum
sample size available was used for each statistical analysis. Paired
t-tests between the standard socks and Superneuro VTT pattern
socks conditions were computed for each subject for all EEG
measures as well as group paired t-tests. A two-tailed alpha was
set to 0.05 for all statistical comparisons. SPSS v. 27 was used for
all analyses.

Results

During EEG readings where the subjects’ eyes were open or closed,
Superneuro VTT enhanced socks activated 35 out of 86 BA (left
and right hemispheres combined) and 48 out of 86 BA (left and
right hemispheres combined), respectively. Among BA that were
activated by Superneuro VTT enhanced socks in a statistically
significant manner, 10 out of 12 overlapped with the review: 9,11,
24, 39, 40, 44- 47. When compared to standard socks, activation
in the medial somatosensory cortex, parts of the occipital lobe,
and bilateral frontal lobes were statistically higher while wearing
Superneuro VTT enhanced socks (p<0.001).

Absolute Power Surface EEG

The percent difference between socks on vs socks off from the 19
scalp electrode locations for the ten frequency bands in the eyes
closed condition, the differences ranged from 0.04 % difference at
01 in the alpha frequency band to 54.68 % in the delta frequency
band in F7.

Table 1 shows the results of the paired t-tests in absolute EEG
power between socks off vs socks on in the eyes closed condition.
Statistically significant differences were primarily in the delta and
theta frequency bands and especially in the left hemisphere in
comparison to the right hemisphere.
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FFT Absolute Power Group Paired t-Test (P-Value).
Table 1: Paired t-tests in absolute power in the surface EEG in all
frequency bands between socks on versus socks off between socks on and

socks off in the eyes closed condition.

Intrahemispheric: LEFT

HIGH | BETA | BETA
DELTA | THETA ALPHA BETA BETA 1 5 BETA3
EFR1
LE 0.207 |0.107 0.573 0.474 0.426 0.618 [0.598 0.312
F3-LE 0.031 0.003 <0.757 0.89 0.826 0.714 0.79 <0.642
C3-LE |0 0.014 0.837 10.993 0.365 0.92 0.606 0.788
P3-LE [0.108 0.031 |0.581 0.455 0.521 |0.461 0.423 0.225
Ol-LE 0.51 0.096 0.77 0.678 |0.119 10.642 0.419 0.35
F7-LE |0.016 0.023 |0.407 0.462 0.572 |0.205 0.416 |o.n5
T3-LE [0.024 0.057 0.549 0.194 0.555 [0.223 0.196 0.358
T5-LE [0.015 0.005 0.552 0.689 0.638 [0.241 0.276 0.508
Intrahemispheric: RIGHT
HIGH | EIETA  EIETA | EIETA
DELTA THETA ALPHA| BETA BETA 1 5 3
FP2-
LE 0.239 |o= 0.607 0.42 0.631 |0.555 0.608 0.44
F4-LE [0.336 (0.4 0.42 0.56 0.358 [0.499 0.57 0.208
C4-LE 0494 0.29 0.263 0.25 0.565 0.766 0.79 0.213
P4-LE [0.039 0.016 <0.584 0.63 0.873 0.767 10.23 <0.845
O2-LE |0.464 0.678 0.585 0.31 0.168 [02M 0.735 0.097
FB-LE|0.462 0.594 [0.414 0.001 0.439 |0.262 0.422 |0.26,
T4-LE 0 0 0.079 0.97 0.04 0.021 0.026 0.274
T6-LE [0.287 0.529 0.984 0.03 0.348 0.404 0.801 0.313
Intrahemispheric: CENTER
HIGH | EIETA | EIETA | EIETA
DELTA THETA ALPHA BETA BETA 1 5 3
Fz-LE |0.187 10.077 |0.873 0.764 0.505 091 0.889 0.419
Cz-LE [0.435 0.546 0.499 0.428 0.234 [0.76 0.997 0.089
Pz-LE [0.458 10.956 [0.853 0.77 0.527 0471 0.55 0.819

The percent difference between socks on vs socks off from the 19
scalp electrode locations for the ten frequency bands in the eye’s
closed condition was measured. The differences ranged from 0.06
% difference at Cz in the beta frequency band to 62.26 % in the
delta frequency band in P4.

Evaluation of the paired t-tests in absolute EEG power between
socks off vs socks on in the eyes open condition resulted in
statistically significant differences (P< .05) that were present
bilaterally with increased power in the lower frequency bands.
Statistically significant reduction in absolute power were present
in the higher frequency bands in the right hemisphere.

Surface EEG Coherence

Figure 1 shows the results of paired t-tests in the surface EEG
coherence measures between socks off vs socks on in the eyes
closed condition. Significant differences (P < .05) were present in
widespread electrode pairs and in all frequency bands in both the left
and right hemispheres. The socks on condition generally resulted
in reduced coherence with the exception of the interhemispheric
temporal lobes (T3-T4) in the delta frequency band.

Figure 2 shows the results of paired t-tests in the surface EEG
coherence measures between socks off vs socks on in the eyes
open condition. Significant differences (P < .05) were present in
widespread electrode pairs and in all frequency bands in both the
left and right hemispheres. The socks on condition consistently
resulted in reduced coherence.

LORETA Current Density

Table 2 shows the results of paired t-tests in LORETA current
density in the eyes closed condition between socks off and socks on.
The effects appeared to be widespread with statistically significant
differences (P <.05) in 48 out of 86 Brodmann areas. There were
more statistically significant differences in the left hemisphere
Brodmann areas (36 out of 43) than the number of Brodmann
areas with statistical significance in the right hemisphere (12 out
of 43). The theta frequency band had more statistically significant
differences than other frequency bands.

Table 3 shows the results of paired t-tests in LORETA current
density in the eyes open condition between socks off and socks on.
The effects appeared to be widespread with statistically significant
differences (P < .05) in 35 out of 86 Brodmann areas. There were
more statistically significant differences in the left hemisphere.

Brodmann areas (22 out of 43) than the number of Brodmann
areas with statistical significance in the right hemisphere (13 out
of 43). The theta frequency band had more statistically significant
differences than other frequency bands.

Figure 3 shows paired t-test (P <.0.001) results in the comparison
of cortical current densities between standard socks versus
Superneuro VTT enhanced socks in the eyes closed condition.
Bilateral significant differences were present with left hemisphere
differences more prominent than right hemisphere. The bilateral
frontal lobes, including the sensory motor strip on the dorsal
surface as well as the medial wall of the somatosensory projection
regions of the foot (Homunculus) from 2 Hz to 7 Hz.

Figure 4 shows paired t-test (P <.0.001) results in the comparison
of cortical current densities between standard socks versus Superneuro
VTT socks in the eyes open condition. Bilateral significant differences
were present with left hemisphere differences more prominent than
right hemisphere. The bilateral frontal lobes, including the sensory
motor strip on the dorsal surface as well as the medial wall of the
somatosensory projection regions of the foot (Homunculus).
Significant differences were also present in the left Para-hippocampal
gyms and the left inferior frontal lobes from 2 Hz to 7 Hz.

Safety

Patients reported no adverse skin reactions, serious adverse events
while wearing the socks embedded with the haptic vibrotactile
trigger technology.

Discussion
The results of this study showed that the EEG auto and cross-
spectrum is effected when the Superneuro VTT enhanced socks
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Figure 1: Paired t-tests in surface EEG coherence between socks off vs socks on in the eyes closed condition.
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FFT Coherence Group Paired t-Test (P-Value)

Intrahermiapheric: LEFT Intrahemisphenc: RIGHT
DELTA  THETA  ALPHA  BETA DELT#  THETA  ALPHA  BETA

FF1 Fa 0.010 0.030 0.200 D410 FFZ F4 0.171 0.157 0.710 0.1
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c3 O 0.827 0.122 0.354 D.102 c4 0z 0.517 0.715 0.857 0.241
C1 F7 Il 7RE 0,277 0 267 0 &k Ca Fe 0075 0163 nET7 REE
ca T3 0277 0.840 0.860 D561 C4 T4 0.000 0.029 04E6 0401
ca TH 0,040 0.105 0.317 0.128 cq TO 0.003 0,553 0.202 0.770
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Figure 2: Paired t-tests in surface EEG coherence between socks off vs socks on in the eyes open condition.
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Group|Paired T-TEST RESULTs: EC_Loreta Absolute Power_noVoxx vs Voxx_n=60 Subjects
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BA_3BL [} 0.6251 02632 048711 08372 02072 BA_3BR 0.1659 0.1382 09951 06684 09945 03313 038305
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Table 2: Paired t-tests in LORETA current density between socks off vs socks on in the eyes closed condition.

Group Paired T-TESTRESULTs: EO Loreta Absolute Power noVoxx vs Voxx n=60 Subjects

BA 1L
BA 3L

BA 3L

BA 4L

BA SL

BA BL

BA TL

BA 8L

BA SL

BA 10L
BA 11L
BA 13L
BA 17L
BA 18
BA 9L
BA 20L
BA 21L
BA 22
BA 23L
BA_ 241
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0.7325
02270
0.2204
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0.1669
0.1701
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0.1692
0.1832
0.0678
06729
0.3446
0.8322
00268

0.0263

0.2409
0.2803
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0.1702 06309 0.4322 05718 0.3404
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0.0786 04820 0.2011 09122 0.6778
0.3521 05018 0.7127 0.7735 0.3339
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Table 3: Paired t-tests in LORETA current density between socks off vs socks on in the eyes open condition.
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T Values (P <0.001) Between Baseline EEG (Standard Socks) vs EEG While Wearing the Srysty Socks -
Eyes Closed Condition
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Figure 3: Paired t-test (P<0.001) differences in current density between standard socks versus Superneuro VIT enhanced socks in the eyes closed
condition.

T Values (P <0.001) Between Baseline EEG (Standard Socks) vs EEG While Wearing the Srysty Socks -
Eyes Open Condition

Frontal Lobe Occipital Cortex Parahippocampal Gyrus

Precentral Gyrus
ko s Am‘; 889 Brodmann Areas 17 & 18 Brodmann Areas 35

Figure 4: Paired t-test (P<0.001) differences in current density between standard socks versus Superneuro VTT enhanced socks in the eyes open
condition.
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are placed on a person's feet as compared to a random sample
of regularly worn socks. Fifty nine out of 60 subjects exhibited
statistically significant changes in surface auto and cross-spectrum.
Sixty out of sixty of the subjects exhibited statistically significant
changes in the EEG source current density.

There was generally an increase in EEG absolute power in the
delta and theta frequency bands, especially in the left hemisphere
and a decrease in power in the higher frequency bands, especially
in the right hemisphere with Superneuro VTT enhanced socks on
vs Superneuro VTT enhanced socks off. EEG coherence primarily
decreased with Superneuro VTT socks on vs regular socks in all
frequency bands and in both hemispheres. Decreased coherence
indicates increased differentiation and increased complexity in
brain networks.

Validation of the effects of the somatosensory foot stimulation on
the central nervous system was further provided by the finding
that LORETA current density consistently increased in the foot
projection areas on the medial surface of the somatosensory
cortex. Bilateral frontal lobe Brodmann areas exhibited the largest
t-test differences (99.9%) in the lower frequency bands (e.g., delta
and theta) and especially in left hemisphere Brodmann areas.
The effects of Superneuro VIT enhanced socks on the electrical
energies of the brain were evident especially in left frontal and left
temporal, left anterior cingulate and left parahippocampal gyrus.

The exact mechanisms of action of the Superneuro VTT enhanced
sock foot pattern on the somatosensory system are currently
unknown. At least three hypotheses are: 1- The process of changing
socks effects the EEG spectrum, 2- Dishabituation occurs because
of the novelty of a sequence of edges that stimulate the foot and,
3- Both hypotheses 1 and 2 contributed to the EEG changes.

During EEG readings where the subjects’ eyes were open or closed,
Superneuro VTT enhanced socks activated 35 out of 86 BA (left
and right hemispheres combined) and 48 out of 86 BA (left and
right hemispheres combined), respectively. Among BA that were
activated by Superneuro VTT enhanced socks in a statistically
significant manner, 10 out of 12 overlapped with the review: 9,11,
24, 39, 40, 44- 47. When compared to standard socks, activation
in the medial somatosensory cortex, parts of the occipital lobe,
and bilateral frontal lobes were statistically higher while wearing
Superneuro VTT enhanced socks (p<0.001). The associated BA
here overlapped with the data from the review as well, with overlap
found in BA 9, 45, and 47 [20]. Thus, it appears that the brain
activation observed following tactile stimulation of somatosensory
activity intersects strongly with brain activation in response to
noxious stimuli, implying a similar relationship to the neuromatrix.
Other studies have noted that the brain regions activated as part of
a neurosignature response to pain are also activated during non-
noxious stimuli [21,23], which suggests that the perception of
pain resulting from cortical response is context dependent. The
context dependent nature of an individual’s response to pain is
also reflected in studies indicating that the intensity of response
is proportional to the perceived strength of the stimulus [24].

These findings may also explain the numerous regions and BA
that are associated with the perception of pain, which may be
due to the high degree of variability in pain perception between
individuals [21,25] The findings presented here strongly suggest
that Superneuro VTT enhanced socks could have an influence on
the subject’s pain management and modulation. Taken together,
results reported here from this IRB-approved study lends further
credence to the hypothesis that disruption or modulation of pain
inputs originating from an internal source, outside an acute pain
event, could be a viable treatment for those experiencing chronic
pain [20,25].

Alternative treatment options that have minimal adverse effects as
compared to conventional systemic analgesics are needed in order
to provide better options to clinicians. A better understanding
of the neuromatrix and identifying novel, non-pharmacological
treatments will add important safe and effective options to a
clinician’s pain management approach to patient care [26-31].

Conclusion

Study results indicate that non-invasive, non-pharmacological
products embedded with haptic vibrotactile trigger technology
may be useful in disrupting the neuromatrix of pain and have
an impact on patient’s pain levels. The results support further
research into the use of this haptic vibrotactile trigger technology
to evaluate if this technology has a positive impact on pain
severity, pain interference, and quality of life and to be considered
as a potentially beneficial pain management strategy and as part of
a multi-modal treatment approach.
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