
Volume 1 | Issue 3 | 1 of 9J Med - Clin Res & Rev, 2017

A Comprehensive Analysis of Security Tools for Network Forensics

Research Article

University of Texas at Dallas Department of Computer Science,
Richardson, TX, USA.

*Correspondence:
Ebru Celikel Cankaya, University of Texas at Dallas Department of
Computer Science, Richardson, TX, USA, E-mail: ebru.cankaya@
utdallas.edu.

Received: 21 October 2017; Accepted: 23 November 2017

Christopher Lopez-Araiza and Ebru Celikel Cankaya

Journal of Medical - Clinical Research & Reviews

ABSTRACT
In an effort to establish a standard for responsive networking systems, we provide a survey of available tools and
their applications for network forensics, as well as discuss the accessibility of these solutions to implement. Our
paper investigates four network security tools in detail: Fail2ban, Netdata, Nmap, and HoneyDrive3 to test run
on experimental setup. We compare these tools w.r.t. seven fundamental forensics criteria as logging, automated
threat response, active monitoring, attack prevention capability, malicious activity detection, malicious activity
notification, and security auditing. Experimental results are compared for further analysis. We rank results based
on degree of coverage for the full set of seven forensics criteria. We also emphasize how utilizing relevant solutions
could have aided in mitigating past threats.

Research Article

Citation: Christopher Lopez-Araiza, Ebru Celikel Cankaya. A Comprehensive Analysis of Security Tools for Network Forensics. J Med
- Clin Res & Rev. 2017; 1(3): 1-9.

Keywords
Security Tools, Network Forensics.

Introduction
As new technologies become integrated with our daily lives,
we have seen a growing desire for data. Smart Devices like
cellphones, televisions, and appliances provide another source of
input and output into our day. Data collection, theft, and utilization
has now become common. Businesses, as well as individuals, have
begun to realize data is currency to the right customer. There are
professionals on all sides of the front, yet the problem of attempting
to preempt the unexpected remains. New forensics tools and
improvements are on the rise, yet standards appear slow to follow
leaving the average user vulnerable. Many network forensics
tools and approaches attempt to solve the problem in retrospect,
rather than focusing efforts into active response and monitoring.
Common preemptive measures seek to collect data and log actions
for later review after an incident has occurred. This approach
leaves forensic responders and security specialists behind from
the start. Similar tools available today can provide insight to these
same incidents as they occur, and provide a foundation to create
a standard for quicker threat response. This paper surveys some
available tools and their applications for network forensics, while
advocating for a more responsive standard of network security.

Through this paper we seek to draw attention to the importance of
a standard for responsive networking systems, while showing how
accessible these solutions are to implement. We also emphasize
how the utilization of the relevant solutions could have aided in
mitigating past threats.

In section 2, we discuss works related to the establishment of
standards and techniques in networking forensics. Section 3
explains the functionality of certain freely available network
security and forensics tools, as well as their potential when
utilized for more responsive network architecture. Tools such as
Nmap [1] and HoneyDrive3 [2] can provide actionable data for
monitoring while also having the potential to act on events in an
automated fashion. While tools such as Fail2ban [3] and Netdata
[4] are designed for real-time network monitoring, response, and
notification of unwanted activity. Section 4 provides analysis
on the results from Section 3 while discussing how it applies to
more responsive network forensic system approaches. Section 5
concludes the paper with final thoughts regarding implementation.

Related Work
As a subset of digital forensics, network forensics addresses the
need for incident investigation after-the-fact for a fundamental
structure most organizations, businesses, schools, and facilities

Volume 1 | Issue 3 | 2 of 9J Med - Clin Res & Rev, 2017

rely on. This makes it quite easy to see how detrimental its security
may be. Information of varying worth and sensitivity must utilize
this medium making it a tantalizing target. As technology changes,
so too shall the threats we face. Due to the volatility of the field,
we must strive for similarly volatile solutions to keep up with
growing threats. Previous Researchers like [5] have discussed
implementation of policies at a business level to mitigate the
impact and increase deterrence of computer crimes on a network.
The need for these policies was identified over a decade ago, yet
we can still find examples today of networks lacking many of these
networking forensics recommendations. Many of which also serve
as improvements in securing the network from future attacks.
Technologies like cloud computing pose a relatively new problem
regarding the collection, authentication, and proof of ownership of
data as discussed by [6]. Researchers have recommended possible
solutions to these problems, usually in the form of newer methods
of logging to be embedded in the cloud architecture like that of
[7]. Yet, many of these discussions and recommendations focus
heavily on what [8] would call the traditional “Reactive Network
Forensics” approach characterized by reacting after an incident
has occurred. This approach has proven to be less than ideal due
to the cost scaling proportionally to the amount of activity logged
as well as the increase in time required for an investigation that
does not occur until after a crime has been committed. As we
survey the following freely accessible tools we hope to convey
both the importance and benefit of utilizing today’s resources in
what [8] refers to as the “Proactive Network Forensics” approach.
This approach seeks to create a network forensics system that
is prepared for an attack prior to the attack, and that is designed
to identify important evidence necessary to mitigate the threat.
Although we acknowledge no network can be made completely
safe from threats, we believe a standard or policy advocating for a
more proactive network forensic approach could greatly improve
a network’s security.

Experimental Work
In this section, we discuss the capabilities of each tool, the
configuration, and the features tested. It should be noted that though
the features of an individual tool may provide limited capability,
when utilized in larger network systems along with other tools
the potential for more proactive network forensics for these tools
greatly increases. The following experiments were not exhaustive
utilizations of all features of each tool, as the authors have chosen
to focus on the evaluation of some of the more popular features
of the following tools. Each subsection dedicated to tools cover
specific configuration regarding the tool, and the following table
shows the Operating System and computer specifications utilized
for the experiments.

Configuration 1 Configuration 2

OS Windows 10 Home Windows 10 Education

Storage 500GB HDD 500GB SSD

RAM 16 GB 8GB

Processor Intel i7-6700HQ 2.60GHz Intel i5-4210U 1.70GHz

System Type 64-bit 64-bit

Table 1: Computer Specifications used for testing.

Fail2ban
Fail2ban is a network logging tool that offers automated intrusion
detection and response. It functions by actively scanning recorded
activity and executes customizable responses to certain indicators
of malicious actions. Once Fail2ban identifies the IPs from which
these activities originate from it conducts actions as passive
as sending a notification, or as active as banning the malicious
machine then updating firewall rules to reject the IP address of the
source machine. Configurations of Fail2ban can be modified to ban
users, email addresses, or any source that is identifiable through
logged activity. Actions can also be configured to react in varying
severities and time periods. Default Fail2ban configuration can
read standard log files from sshd and Apache, but the tool itself
is designed for easy configuration to read any log file of your
choosing. Included in the default configuration are well known
filter-rules for things such as failed password attempts and activity
through common services like ssh, apache, courier, etc. It is also
worth noting all IP based features work for both IPv4 and IPv6
addresses.

For the following experimentation of Fail2ban version 0.9.6-
2 configuration 2 from Table 1 was used. Current Fail2ban
installation packages are only available for predominately Linux
and Unix based operating systems such as Mac OS, ArchLinux,
Ubuntu, Red Hat, and more. Therefore, a Virtual Machine was
needed for testing the software. Oracle VM VirtualBox version
5.1.18 was used to run an Ubuntu 16.04.1 LTS VM. Installation
was conducted by downloading the contents of [9] and utilizing
the recommended terminal commands given to untar and install
the Fail2ban tar file onto the Ubuntu VM. Since it is expected that
new versions of Fail2ban are to be released in the future on the
same GitHub repository, one can still access the version utilized
during this research through the “Releases” page through [9]. After
installation you will find multiple configuration files in your “/etc/
fail2ban/” with the extension “.conf”. For the experiment we began
by modifying our configuration of Fail2ban. First we navigated to
the “jail.conf” configuration file in the “/etc/fail2ban/” directory.
It is worth noting that if you plan to maintain your version of
Fail2ban and update in the future then customization of “jails”, or
actions you wish to occur in response to malicious activity, must
be done by creating a “jail.local” under the “jail.d/” directory in
order to prevent updates from erasing your changes. Since this was
not a factor in our experiment we have opted to modify the default
configuration file. Through this file we can configure: ban time, a
“white-list” of IPs whose actions we wish to ignore, max password
attempts allowed, email address to notify of malicious activity, file
paths for logs, which ports to associate with which filters, and more.
To set the default ban time to one minute we modified the “jail.
conf” as seen below in Figure 1. The value of “bantime” was set to
60 since Fail2ban interprets this value in seconds, thus making the
ban time a minute. Afterward we located the “destemail” variable,
as seen in Figure 2, we can assign it to any email address we wish
to be notified when our malicious activity defined by one of our
filters is detected.

Volume 1 | Issue 3 | 3 of 9J Med - Clin Res & Rev, 2017

Figure 1: Screenshot of bantime configuration for Fail2ban.

Figure 2: Screenshots of destemail configuration for Fail2ban.

Upon configuring our destination email for notifications Fail2ban
required one final configuration, which was a firewall. Since our
testing environment is an Ubuntu VM we decided to utilize the
standard firewall that comes with the operating system. Iptables
provides standard firewall functionality by acting as a front end to
the network interface. As traffic comes in a set of rules maintained
and configured through the “iptables” console command is used
to filter incoming traffic. In Figure 3 we show how to initiate the
fail2ban service as well as the output of the “iptables –S” command
which displays the rules set for our firewall during the experiment.
The configuration we chose for the firewall is basic, ssh and web
ports are open and incoming as well as outgoing traffic is allowed.

Figure 3: Screenshot of fail2ban service start and iptable rules listing.

Next, we decided to test Fail2ban’s primary goal out-of-the-box,
which is to monitor login attempts and ban IP addresses belonging
to machines that have exceeded the designated attempt limit. Now
that we have the fail2ban service running on our Ubuntu VM, the
next step is to simulate multiple failed attempts at logging into the
VM remotely. Using the windows command prompt on our host
machine (whose specifications can be found under configuration
2 in Table 1) we attempted to ssh into the Ubuntu VM using its

IP address as the hostname and purposely failed to login three
times. The fourth time we attempted to login we received an
error message preventing us from attempting a fifth time, thus
indicating some sort of interference. To confirm the Fail2ban
service was responsible, and had updated our firewall rules to
prevent further attempts we returned to the console on the Ubuntu
VM and executed the “iptables –S” command to list firewall
rules. In Figure 4 below the first output from Figure 3 can be seen
having a noticeable difference to the most recent output, there is
a new rule configured with our firewall specifically rejecting ssh
attempts from an IP address which at the time was the address
of the host machine. Therefore, showing that Fail2ban does as
expected by actively monitoring ssh attempts to the Ubuntu VM
running the Fail2ban service and banning the IP address of the
machine exhibiting malicious behavior by exceeding our limit of
login attempts.

Figure 4: Screenshot of new firewall rules added by Fail2ban.

Netdata
Netdata is an interactive web dashboard for “real-time performance
and health monitoring systems” [4]. It is designed to require
minimal maintenance and configuration, if any, after installation
unless you desire the use of a specific alarm/notification medium
and/or the use of adding another metric to monitor. Many APIs for
messaging like Slack and Twilio are supported out-of-the-box, as
well as many methods of adding metrics like python, ruby, and
java. Netdata also seeks to minimize dependencies by hosting
its own static web page and API on the host machine, therefore
eliminating the need for any additional configuration to access
live metrics other than installation. Monitoring metrics is the main
feature Netdata focuses on, and arguably one could say it does it
very well. Local metrics like CPU, Memory, and Network activity
per interface are not the only sources of data being monitored.
Interprocess communication, detailed packet analysis, metrics for
DDoS detection, processes and their activity, applications, web
server logistics, database queries and operations just to name a few
[4]. Netdata seeks to be the universal dashboard where all metrics
can be monitored. If the default installation does not already come
with compatible features for measuring a desired metric, then it is
likely the monitoring system can accept customized plugins for

Volume 1 | Issue 3 | 4 of 9J Med - Clin Res & Rev, 2017

your desired metric.

Netdata is a freely available tool designed for Linux systems,
therefore we will be utilizing configuration 2 from Table 1 as
well as the same Ubuntu 16.04.1 LTS Virtual Machine running
on VirtualBox from our testing environment used to run Fail2ban
previously to conduct our tests. Consistent with the goal of the
Netdata development team, installation was simple. In the
“wiki” page accessible through [4], single line commands for
downloading the contents of the Netdata GitHub repository or from
the developer’s website can be found. These commands consist of
the traditional “git clone” command to copy a repository locally,
and the “curl” command to transfer data from the server locally,
respectively. We used the latest version of Netdata at the time which
was version 1.5.0. We attained our copy of the installation through
the “curl” command accompanied by the url for the kickstart script
hosted on the Netdata team’s server at the time “https://my-netdata.
io/kickstart.sh”. To replicate the results of our test after the Netdata
repository has been updated one can access older versions of the
repository through the “Releases” page accessibly through [4].
After Netdata has been installed, open a console and navigate to
the “/netdata” directory and run the “netdata-installer.sh” installer
script using root privileges. A textual notification that Netdata has
been installed and is running should appear in the console once the
script completes. Now Netdata’s web dashboard should be live and
accessible through any web browser on the system. To access the
web dashboard running locally on the host machine through port
19999, simply navigate to “localhost:19999” in your web browser.
A view like that of Figure 5 below, should appear.

Figure 5: Screenshot of Netdata dashboard.

To test Netdata’s ability to actively monitor system data and alert
us of abnormalities that could possibly signal malicious intent, we
decided to run an open scan of the Ubuntu VM using Nmap. On
our host machine, we used a multi-platform Nmap GUI accessible
on Windows called Zenmap. In Figure 6 the parameters used to
conduct the scan of our Ubuntu VM, whose IP address at the time
was 192.168.247.128, are shown. Since the host machine and the
Ubuntu VM were both on the same network we were capable of
executing the following Nmap scan.

During this scan, an alert appeared on the Netdata dashboard

indicating that an abnormal amount of TCP RESETS was being
sent from the host. The alert can be seen in Figure 7 below.

Figure 6: Screenshot of Zenmap scan parameters.

Figure 7: Screenshot of alert given by Netdata.

We could also see a noticeable difference between metrics before
and after the scan showing that Netdata does actively monitor for
abnormalities in metrics like IPv4 traffic. Figure 8 shows how
before the scan virtually zero IPv4 packets being received or sent
by the Ubuntu VM, while Figure 9 shows an increase in IPV4
packet communication.

Figure 8: Netdata IPv4 traffic data before Nmap Scan.

It is also worth noting all abnormalities in data are logged in the
“Alarm Log” accessible through the Netdata dashboard. Figure

Volume 1 | Issue 3 | 5 of 9J Med - Clin Res & Rev, 2017

10 shows the view of this log after the Nmap scan. As you can
see not only does this view provide a simple way of checking
for abnormal events, but it also indicates when the abnormalities
finished and provides a “CLEAR” status indicating the activity is
no longer occurring.

Figure 9: Netdata IPv4 traffic data after Nmap Scan.

Figure 10: Netdata Alarm Log after Nmap Scan.

Nmap
Nmap is an open source “network discovery and security auditing”
utility [1]. It uses a combination of raw packet data as well as
creative implementations of network communication manipulation
to determine information like: a target’s Operating System, network
mapping, security identification, port and application activity,
firewall configuration, and services the target is interacting with
[1]. Nmap also has a Scripting Engine capable of using Lua scripts
to automate networking tasks like vulnerability detection and more
sophisticated implementations of other Nmap features.

Detailed Nmap installation and documentation information can
be found at [1]. For the following Nmap testing, configuration 1
from Table 1 was used. Although Nmap tools can be utilized on
the host Windows machine, we felt it best to simulate a network to
test Nmap giving us control over more environment variables. To
simulate a network topology, we utilized GNS3 Version 1.5.3.0,
a network virtualization environment for building, designing,
and testing network topologies. We chose GNS3 due to it being
freely accessible, team members had experience with the tool,
and importing VirtualBox VMs into the topology was supported.
The topology we chose was a simple network of two machines,
both of which are joined by a virtual link connecting their network
interfaces. Figure 11 below shows this topology.

We utilized a popular penetration testing Linux distribution known
as Kali Linux version 2016.2 which comes pre-packaged with
Nmap version 7.25BETA1. The Ubuntu VM is the same Ubuntu

16.04 version utilized in previous experiments. In Table 2 below
you will find the network configuration given to each machine and
their respective network interface using the “ifconfig” network
utility that comes with Unix-like operating systems.

Figure 11: GNS3 network topology used for Nmap testing.

VM IP address Netmask Interface

Kali Linux VM 10.1.1.1 255.255.255.0 eth0

UbuntuVM1 10.1.1.2 255.255.255.0 enp0s3
Table 2: Configuration of VMs on virtual network in GNS3.

It is recommended that once the configuration is done and the
GNS3 virtual environment is initiated, utilize the “ping” tool from
either of the VM’s consoles to ensure connectivity between the
two machines. Once configuration was completed and confirmed,
we started to test the features of Nmap. The first feature we tested
was the operating system detection. Nmap can detect the OS of
other machines on the network through TCP/IP fingerprinting.
This involves the sending of TCP and UDP packets to the host,
then thoroughly examining the responses by running them through
TCP ISN sampling, and IP ID sampling tests. The results are then
compared to known responses of multiple OSes and an answer as
to what OS could have sent those responses is given. If there is
uncertainty as to what OS it is exactly then multiple answers are
given along with a percentage based on how much of the responses
matched with that given answer’s known response markers. In
Figure 12 we show the result from running Nmap’s OS detection
in the Kali VM to determine the OS of the Ubuntu VM.

Figure 12: Screenshot of Nmap OS detection results.

The results of the OS detection feature did not return the expected
answer indicating an Ubuntu based system was found, however
the results were technically accurate. Nmap detected a “QEMU”
based operating system which is correct since the Ubuntu VM is
running in a virtualized environment using Oracle’s VirtualBox
software which uses QEMU as a virtual machine emulator. This
explains the QEMU virtual NIC and unexpected result. It is
worth noting that the port and service information can help with

Volume 1 | Issue 3 | 6 of 9J Med - Clin Res & Rev, 2017

determining further information about the operating system, but
in this situation the information is slightly deceptive. Although
Microsoft services are running on port 135 and port 445, further
investigation of the diverse uses of these ports shows that non-
Windows machines could also utilize these same points of service
[11]. The next feature we tested was Nmap’s full scan. To receive
a more robust response from the scan we decided to utilize the test
web address provided by the Nmap team on their website for testing
purposes “scanme.nmap.org”. This feature utilizes the power of
multiple Nmap features at once on the given target machine. OS
detection, version detection, script scanning, and tracerouting are
the main features invoked when utilizing this full scan. Figure 13
through Figure 15 below show the results from this scan.

Figure 13: Screenshot of Nmap full scan output (1 of 3).

Figure 13 shows execution of default Lua scripts through Nmap’s
Scripting Engine (NSE) to execute multiple Nmap features in
parallel. As shown in Figure 13, after the target name is resolved
through a DNS server, port scanning is conducted on the target
machine showing multiple open ports. This serves as one of Nmap’s
security auditing features since open ports when left unsupervised
can pose as a vulnerability by providing remote access to the target
machine itself. After port scanning has begun, other features like
traceroute and OS detection are also initiated through the NSE.
Figure 14 shows the results of more port scanning, including ssh
hostkeys and services running on the identified ports. Towards the
bottom of the screenshot we begin to see the OS detection results,
in this case the responses to the Nmap packets seem to have
markers like systems with Linux, Cisco, and Linksys devices. It
is worth noting how the output indicates these are indeed guesses
based on the responses match percentage to known OS response
markers, as opposed to a definitive response.

Figure 15 below shows the remainder of the Nmap scan output.
Most of which pertains to the results from the Nmap traceroute
feature. The results indicating the different hops, ports utilized,
and addresses reached are straightforward. As we can see the scan

was successful at utilizing multiple Nmap features and applying
them to a single target machine.

Figure 14: Screenshot of Nmap full scan output (2 of 3).

Figure 15: Screenshot of Nmap full scan output (3 of 3).

HoneyDrive3
HoneyDrive3 is an open source honeypot linux distribution
designed using Xubuntu 12.04.4 LTS [2]. It comes with 10
pre-installed/configured honeypot packages like Kippo SSH
honeypot, Dionaea, Amun malware honeypot, Honeyd low-
interaction honeypot, Glastopf web honeypot, Conpot SCADA/
ICS honeypot, and more. Each honeypot package is designed
to simulate a type of vulnerable system to attract and monitor
malicious attacks conducted on it. These honeypots provide a

Volume 1 | Issue 3 | 7 of 9J Med - Clin Res & Rev, 2017

layer of defensive between the network and attackers by leaving
digital bait for the attacker to fall for. As the attacker conducts their
malicious activities in this virtually sandboxed environment, those
monitoring the honeypot can analyze and improve other security
measures to prepare for such an attack in the future.

In this work, we test one of the more popular honeypots that
HoneyDrive3 offers, Kippo SSH honeypot. Kippo comes
preconfigures and ready to simulate a machine on a network.
Before we can use Kippo we must first configure HoneyDrive3.
Since HoneyDrive3 is a Linux distribution designed to be used as
a virtual machine, we can download the preconfigured “.ova” file
from [2] and open it with Oracle VM VirtualBox. For the following
tests configuration 1 from Table 1 was used along with the same
VirtualBox version 5.1.18 as previous tests. Upon opening the
“.ova” file with VirtualBox, the appliance setting window as shown
in Figure 16 should appear. We opted to reinitialize the MAC
address of all network cards then import as is to avoid network
configuration conflict.

Figure 16: Screenshot of Appliance Settings for HoneyDrive3.

After importing the HoneyDrive3 VM, we configured the network
adapter settings to attach to the host machine using NAT. To SSH
from our host Windows machine to the VM we needed a way of
redirecting an SSH request. Figure 17 shows how we configured
a port forwarding rule in the HoneyDrive3 VM network settings.

Once this port forwarding rule has been set, HoneyDrive3 is ready

to run. Information on how to start HoneyDrive’s many honeypots
can be found in the “README.txt” located on the desktop at start
up. As indicated in the readme textfile, to start Kippo the “start.sh”
script must be executed as shown in Figure 18 below.

Figure 17: Screenshot of HoneyDrive3 port forwarding rule configuration.

Figure 18: Screenshot of HoneyDrive3 Kippo start.

To ensure this process is indeed running, the “ps aux” console
command accompanied with a grep for “start.sh” can be used to
view a snapshot of current processes running for all users that
match the chosen grep criteria. To test Kippo’s ability to simulate
a machine separate than that of the HoneyDrive3 VM, while also
providing valuable information on the attacker’s actions the next
step was to SSH into the HoneyDrive3 VM. On the host PC running
Windows we used PuTTY to SSH. Since the port forwarding rule
from earlier indicated traffic going towards the localhost port 2222
would be redirected to the IP address of the VM port 22 where
SSH attempts are expected, the SSH request through PuTTY was
for 127.0.1.1:2222. Once connection is established we simulated
multiple failed login attempts to root before entering the default
password for the root account, which can be modified prior to
running Kippo if one chooses to do so. To an attacker, the contents
of the console screen once access has been attained seems normal,
as shown in Figure 19 below.

While the Kippo Honeypot service is running on the VM a local
web server can be accessed to view data recorded by the honeypot.
In order to view this data open a web browser on the VM and
navigate to “localhost/kippo-graph/kippo-graph.php” as seen in
Figure 20 below.

Through this web page visualizations of recorded data can be

Volume 1 | Issue 3 | 8 of 9J Med - Clin Res & Rev, 2017

found. Metrics like which usernames and passwords were used,
what IP addresses attempted to login, what geolocation data can
be found regarding that IP address, how many successful login
attempts over a designated period occurred, and even playback of
recorded attacker activity can be found as shown in Figure 21.

Figure 19: Screenshot of Kippo SSH honeypot contents.

Figure 20: Screenshot of Kippo graph web page.

Figure 21: Screenshot of recorded playback log.

As shown, Kippo was successful at emulating a system capable
of being SSH’ed into. It was also capable of recording detailed
logs of our interactions while SSH’ed into the honeypot for further
threat analysis.

Tools

Lo
gg

in
g

A
ut

om
at

ed

Th
re

at

R
es

po
ns

e

A
ct

iv
e

M
on

ito
rin

g

C
ap

ab
le

 o
f

pr
ev

en
tin

g
at

ta
ck

M
al

ic
io

us

ac
tiv

ity

de
te

ct
io

n

N
ot

ifi
es

 o
f

m
al

ic
io

us

ac
tiv

ity

Se
cu

rit
y

A
ud

iti
ng

Fail2ban X X X X X

Netdata X X X X

Nmap X X X

HoneyDrive3 X X

Table 3: Comparison of characteristic of tools surveyed out-of-the-box.

As shown in Table 3, many features like logging are quite common
amongst network security/forensics tools. While features like
automated threat response and preventative security measures to
guard from attack are not as common. Even within the domain of
logging some of the tools surveyed vary significantly. HoneyDrive3
provided a way of mapping geolocation data of connected hosts
while providing full playback of all commands and downloads
conducted while connected to the honeypot. Alternatively, there
are tools like Netdata that focus on metrics like traffic, queries, and
system health looking for irregularities that could signal malicious
activity. Both provide information that could be detrimental
to responding to threats in an accurate and timely manner, yet
examples can be found today of network forensics systems that
do not implement diversified logging solutions. To create more
responsive network systems capable of faster and more automated
threat responses both diversification of tools used as well as
customization of tools must occur.

There exist multiple tools today that are open source and/or
designed to allow easy customization of automated actions and
threat criteria to look for. For example, Fail2ban is by default
designed with the capability to block an IP in response to malicious
activity originating from it, and/or notify you through email of the
incident. However, as previously mentioned many of these tools
have potential that exceeds their default configuration. With a
preemptive network forensics system in mind, we can utilize tools
like Fail2ban to not only identify customized threat criteria, but
also to automatically react in a completely customizable fashion.
For example, customized utilizations of Fail2ban like [10] exist
showing how through the addition of an action to the “actions.d”
directory along with configuration of the “jail.local” file one can
have Fail2ban run a custom script utilizing an api in response to
any specified log activity.

Conclusion and Future Work
This work addresses the most popular four network security tools,
namely Fail2ban, Netdata, Nmap, and HoneyDrive3, and uses
them to test run on an experimental setup to demonstrate how each

Volume 1 | Issue 3 | 9 of 9J Med - Clin Res & Rev, 2017

© 2017 Lopez-Araiza C & Cankaya EC. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

tool can be used for network forensics purposes. The results we
obtained give insight that each tool is a safe resource for utilizing
as a network forensics tool as they achieve the goal of detecting
an anomaly/intrusion successfully in a timely manner. Moreover,
we compare these tools with respect to 7 fundamental forensics
criteria as logging, automated threat response, active monitoring,
capability to prevent attack, malicious activity detection,
notification of malicious activity, and security auditing. Results
show that Fail2ban outperforms the rest of the tools by supporting
5 out of 7 of the forensics criteria. It is followed by Netdata, which
meets 4 out of 7 criteria. The remaining two tools Nmap and
HoneyDrive3 performs the least as compared to other two tools
by only meeting 3 out of 7 forensics criteria, though different ones.

Our work can be used as a guideline to determine which tool to
use for network forensics purposes with respect to different criteria
considered in our experiments.

We plan on extending our experiments to include more tools so as
to provide a wider span of analysis in the field and help potential
tool users determine which tool to employ whenever needed.

Acknowledgement
The authors would like to thank Mr. Alan Padilla for his contribution
to the experimental work in this paper.

References
1.	 https://nmap.org
2.	 https://sourceforge.net/projects/honeydrive/?source=typ_

redirect
3.	 https://www.fail2ban.org/wiki/index.php/Fail2Ban
4.	 https://github.com/firehol/netdata/wiki
5.	 Alec Yasinac, Yanet Manzano. Policies to Enhance Computer

and Network Forensics in Proc. of the 2001 IEEE Workshop
on Information Assurance and Security. 2001; IEEE.

6.	 Josiah Dykstra and Alan T. Sherman. Acquiring forensic
evidence from infrastructure-as-a-service cloud computing:
Exploring and evaluating tools, trust, and techniques in Digital
Investigation. 2012; © Dykstra & Sherman.

7.	 Alecsandru Pătrașcu, Victor-Valeriu Patriciu. Logging System
for Cloud Computing Forensic Environments in Control
Engineering and Applied Informatics. Bucharest, Romania.
2014; 16: 80-88.

8.	 Gulshan Shrivastava. Network forensics: Today and
tomorrow, in 2016 Int Conf on Computing for Sustainable
Global Development. 2016; IEEE.

9.	 https://github.com/fail2ban/fail2ban
10.	 https://github.com/toonketels/fail2ban-sms
11.	 http://www.speedguide.net/ports.php

