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Editorial
Research into the role of bacterial lipopolysaccharides (LPS) has 
escalated with the improved understanding of the LPS effects on 
astrocytes and neurons with relevance to brain neuroinflammation 
[1,2] that is now of major concern in neurodegenerative diseases. 
LPS activates the toll-like receptor 4 (TLR-4) in mouse and 
human astrocytes with TLR-4 linked to neuroinflammation and 
neuron death [3-6]. LPS related toxicity may influence neuron 
membrane cholesterol by binding to cell membranes that promote 
amyloid beta (Aβ) aggregation and fibril formation [7] to mediate 
accelerated neuron death. LPS are endotoxins and essential 
components of the outer membrane of gram negative bacteria 
and consist of covalently linked segments, surface carbohydrate 
polymer, core oligosaccharide and acylated glycolipid that can 
bind to cell membranes to alter membrane interactions [8,9]. LPS 
regulate plasma acute phase proteins (gelsolin, serum amyloid 
protein A, serum amyloid protein, C-reactive protein, clusterin, 
transthyretin) [7] and various other acute phase proteins (APP) 
involved in Aβ aggregation (transferrin, albumin, phospholipid 
transfer protein, LPS binding protein (LBP), albumin).

The cluster of differentiation 14 (CD14) receptor is referred to 
as the LPS receptor and involved with brain Aβ metabolism [7]. 
The CD14 receptor assists in the co-ordination of the microglia 
that promotes Aβ mediated and oxidative neuron death [10]. In 
the developing world increased plasma LPS levels have raised 
major concern with relevance to CD14 regulation of TLR-4 
mediated accelerated neuron death [11,12]. Detailed studies 

now indicate that LPS now repress the nuclear receptor Sirtuin 
1 (Sirt 1) with its toxic effects related to interference with Sirt 
1’s role in the regulation of transcription factors [13] related to 
neuron proliferation and induction of Type 3 diabetes. Sirt 1 is 
now closely linked to the immune system [14], insulin resistance 
and metabolic activity [7]. Sirt 1’s role in neuron death is now 
connected to cellular proteins (Figure 1) such as heat shock 
protein (HSP), cellular prion protein (PrPc), alpha-synuclein and 
tau that are connected to Aβ aggregation [15-23] and accelerated 
neuron death. LPS represses Sirt 1 [13] with HSP involved in the 
regulation of PrPc and Aβ aggregation relevant to mitochondrial 
apoptosis and neuron death [24-39]. The nuclear receptor Sirt 1’s 
role on neuron survival/apoptosis via LPS is primary with effects 
of LPS secondary on CD14 regulation of TLR-4 mediated neuron 
apoptosis [7,10-12].
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Figure 1: LPS neutralize apolipoprotein E and repress the nuclear receptor 
Sirt 1 relevant to protein aggregation and mitochondrial apoptosis. The 
effects of LPS on mitophagy may be mediated by acute phase proteins, 
albumin, cellular prion protein or amyloid beta aggregation. Under core 
body temperature disturbances heat shock proteins induce amyloid beta/
cellular prion protein aggregation and induce neuronal mitophagy with 
relevance to neurodegenerative disease and epilepsy induced stroke.

LPS and its involvement with Sirt 1 in protein aggregation is linked 
to magnesium deficiency [40] with induction of mitochondrial 
apoptosis associated with epilepsy induced stroke [41-44]. Other 
Sirt 1 inhibitors such as palmitic acid, suramin, sirtinol, alcohol and 
fructose should be carefully controlled to prevent mitochondrial 
apoptosis [45] and neuron death. Excessive consumption of 
arginine, patulin, xenobiotics and butyric acid should be avoided 
to prevent Sirt 1 downregulation. Excessive caffeine consumption 
should be avoided with relevance to magnesium deficiency [45] 
and nuclear receptor Sirt 1 disturbances associated with Type 3 
diabetes [45]. The effects of core body temperature inactivate Sirt 
1 with HSP and PrPc connected to protein aggregation [15,46-
49] and mitophagy in neurodegenerative diseases and epilepsy 
induced stroke [42]. 

Conclusion
Toxic protein aggregation and neuron death has become of 
major concern to neurological stroke, cerebrovascular diseases, 
neurological disorders and functional/epilepsy Res Surgery. 
Plasma LPS should be monitored early in life to prevent 
mitochondrial apoptosis in neurodegenerative diseases. Dietary 
and pharmacological inhibition of neuron nuclear receptors will 
determine neuron proliferation and remodeling with excessive 
nuclear receptor inhibitor consumption related to protein 
aggregation in neurological diseases. Core body temperature 
malfunction will lead to uncontrolled aggregation of proteins with 
neuronal mitophagy associated with neurological stroke.
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