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Soft-templated Synthesis of Carbon Micron-Buds
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ABSTRACT
Using coal tar pitch based amphiphilic carbonaceous materials (ACMs) as the precursor and amphiphilic triblock 
copolymer F127 as the only soft template, hollow Carbon Micro-Buds (CMBs) were synthesized. The concentration 
of F127, cF, and the mass ratio of F127 to ACM, r, are the key parameters of controlling the shape of the as-
prepared products. CMBs with diameters of about 1 μm were prepared under the condition of ci = 53.4 g/L and r = 
2. CMBs were amorphous materials.
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Introduction
Oxidized carbonaceous materials, which are called amphiphilic 
carbonaceous materials (ACMs), can be dissolved in basic 
aqueous solution and some polar organic solvents and then form 
carbonaceous gel easily [1]. The raw materials of ACMs are 
cheap, including mesophase pitch, coal tar pitch, petroleum green 
coke, green needle coke and so on [2]. Due to their amphiphilic 
property, ACMs have been used for the preparation of hollow 
carbon microbeads [3], ultrafine carbon powders [4], amorphous 
carbon nanoparticles [5], Ti(C, N, O) nanoparticles [6], vesicular 
carbon with mesopores of 2-4 nm in width [7], mesoporous 
carbon particles [8] and carbon aerogels [9]. Although most of 
the mesopores of these porous materials are disordered, it is a 
simple and inexpensive approach to use ACMs as the precursor 
of carbon spheres and porous carbons, which have been expected 
to find extensive applications in catalysis, adsorption and electric 
conductive materials [8,10].

For the preparation of carbon materials with ordered mesopores, 
amphiphilic triblock copolymer Plutonic F127 has been used as 
the typical soft template coupled with mesoporous SiO2 as the hard 
template [11-15], or only the hard template, KIT-5, is used [16-19]. 
It is worthy of note that mesoporous carbon materials have not 

been prepared if only P123 is used [20]. Here, we develop a facile 
procedure for synthesizing CMBs, using F127 as the only template 
and ACMs as the precursor.

Eeperimental
Synthesis of CMBs
Coal tar pitch were purchased from the Wuhan Steel Co., Ltd. in 
China. ILs was purchased from Nanjing Will Co., Ltd. in China. 
ACMs were synthesized by oxidation of coal tar pitch with the 
mixture of concentrated nitric acid and sulfuric acid (v/v = 3/7) at 
30oC. The details of this preparation have been described in earlier 
report [21]. In a typical synthesis, F127 (53.4 g/L in terms of the 
concentration of F127, cF) and ACM (the mass ratio of F127 to 
ACM is 2) were added to 150 ml of solution of aqueous ammonia 
and stirred until dissolution at 30ºC, followed by a stirring for 3 h 
and the addition of 10 ml of ethanol under stirring. Subsequently, 
the solution was aged at 90ºC for 24 hrs and filtrated. The residue 
was dried at 100ºC in a vacuum drying device and the resulting 
mixture of F127 and ACM was denoted as F-ACM. The heating 
rate of carbonizing the mixture of F127 and ACM is 1ºC /min 
before 450ºC and 3ºC /min afterward. After carbonized at 800ºC 
for 6h under N2 flow, the carbonized products were obtained and 
denoted as CMBs.

Material Characterization
The morphology and the structure of CMBs were examined by 
high resolution transmission electron microscopy (TEM, JEOL 
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JEM3010, operated at 160 kV) and field emission scanning 
electron microscopy (FESEM, 6700F, operated at 5 kV).

Results and Discussion
Formation mechanism of CMBs
ACM molecules and F127 micelles can form ordered lyotropic 
liquid crystals via S0I0 multiple hydrogen bonding interactions 
in solution of aqueous ammonia, in which the hydroxyl groups 
on ACM are hydrogen donors and the hydrophilic group on F127 
are hydrogen bonding acceptor. The macroscopic morphologies 
of ordered lyotropic liquid crystals are various, depending on the 
stacking of the micelles of F127 [22]. The CMBs were synthesized 
from sphere and cylinder.

In the covalent bonding between C60 and a SWCNT, our DFT 
computation shows that a single C-C covalent bond between C60 
and the SWCNT is unstable and can spontaneously break. At least 
two C-C covalent bonds are required via the cycloaddition reaction 
to stabilize the CNB (Figure 1b). Two possible ways for the 
cycloaddition reaction were considered: (1) a pair of parallel C-C 
bonds form a quadrilateral ring, namely, the [2+2] cycloaddition 
(Figure 1b,c), and (2) a hexagonal face of C60 and a hexagonal ring 
in the SWCNT are connected together to form six C-C covalent 
bonds, namely, the [6+6] cycloaddition (Figure 1d). It is well-
known that there exist two types of C-C bonds in C60 fullerene, one 
between two hexagonal faces and another between the hexagonal 
and pentagonal faces (labeled as the hh and hp bond in Figure 1a, 
respectively). Also, two types of C-C bonds can be seen in the 
SWCNT, characterized by the angle between the C-C bond and 
the tube axis. Among the C-C bonds, 1/3 are either normal (labeled 
as V) or parallel (labeled as P) to the tube axis in the armchair or 
zigzag SWCNT, while the remaining 2/3 form a sharp angle with 
the tube axis (labeled S), as shown in Figure 1b,c. In total, eight 
possible C60/SWCNT configurations are available for the [2+2] 
cycloaddition and two C60/SWCNT configurations for the [6+6] 
cycloaddition. We have performed full geometric optimization for 
all 10 possible C60/SWCNT configurations. The resulting 10 CNB 
structures are all stable. The covalent bonding between C60 and 
SWCNT induces a local distortion of the SWCNT surface where 
some carbon atoms of the SWCNT are pulled outward from the 
original wall surface and their bonding is transformed from sp2- to 
sp3-hybrid- ization [23].

Morphologies of carbonized products
SEM images of CMBs is presented in Figure 2 consists of 
irregularr MicronBuds and carbon tube of micronsize. These tubes 
are composed of primary particles connecting to each other after 
the formation of carbon gel. After carbonization, the diameter of 
CBMs is about 1μm.

Scanning electron microscopy (SEM) images of the product at 
low magnifications suggest that most synthesized CMBs have an 
‘amorphous particles’ and carbon tube (Figure 2a-c). However, 
careful investigationsreveal that much of the particles in fact 
consists of fullerenes. Their spherical nature has been confirmed 
by tilting samples within a TEM (Figure 2d). carbon spheres have 
non-uniform diameter of lower 500 nm.

It is known that non-covalently attached fullerenes are highly 
mobile on the surface of fibers under exposure to a TEM beam 
[23], but our TEM observations showed CMBs to be stationary, 
indicating strong bonding. In order to further examine the nature 
of the CMBs bond, we attempted both to evaporate and to dissolve 
the MicronBuds from the surface of the carbon tube. Thermal 
treatment of the samples at 300-700ºC in inert helium or argon/
hydrogen atmospheres showed no changes in the observed CMBs 
structures (Figure 2c). Careful washing of the CMBs in various 
solvents (hexane, toluene and decaline) also did not result in 
any significant alteration of the examined samples. Moreover, a 
mass-spectrometric investigation of the solvent after MicronBuds-
carbon tube washing did not reveal the presence of any dissolved 
MicronBuds, further indicating a strong interaction between the 
MicronBuds and carbon tube.

Figure 2: SEM and TEM images of samples.

Conclusion
We have synthesized CMBs using coal tar pitch based ACM 
as the precursor and F127 as the soft template. The shape of 
the as-prepared products can be controlled by tuning the F127 
concentration and the mass ratio of F127 to ACM. MicronBuds 
with diameter of 150-500 nm were obtained when the mass ratio of 
F127 to ACM is 2 and the F127 concentration is 53.4 g/L. During 
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the immediate carbonization of F127/ACM aggregates, ordered 
mesopores structure within the carbon skeleton was destroyed, 
due to the crosslinking reaction and decomposition of functional 
groups.
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