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1 Introduction

Hong, Karolyi & Scheinkman (2020) highlights the key role of financial institutions, such as lenders,

in the climate change adaptation process. Lenders held 11.2 trillion dollars of residential mortgage

debt as of 2019 (Goodman 2020), hence lenders could emerge as key financial institutions helping

households navigate through increasing climate risk. Bender, Knutson, Tuleya, Sirutis, Vecchi,

Garner & Held (2010) predicts a doubling of category 4 and 5 storms by the end of the 21st century.

After hurricane Katrina, the substantial payments of the National Flood Insurance Program (NFIP)

mitigated a potential rise in mortgage defaults (Gallagher & Hartley 2017). Since 2006 however,

the number and dollar amount of NFIP flood insurance policies have declined substantially (Kousky

2018); and damages due to hurricane storm surges have affected areas far beyond FEMA’s Special

Flood Hazard Areas where flood insurance is required. A key empirical question is whether the risk of

mortgage defaults due to climate change is borne by lenders or securitizers: in 2019, the government-

sponsored enterprises (GSEs) guaranteed $6.88 trillion in home mortgage debt without pricing flood

risk in their guarantee fees.1 Have and will the GSEs act as de facto insurers? Understanding

whether lenders originate and distribute their climate risk requires (i) estimating the causal impact

of flood risk “new news” on lenders’ securitization activity; (ii) estimating whether lenders would

originate risky mortgages in a counterfactual world where the GSEs either did not securitize in flood

risk areas or charged guarantee fees that match the GSEs’ potential losses; and (iii) whether the

GSEs’ securitization activity and lenders’ underwriting policies incentivize borrowers to locate to

flood-prone areas.

This paper addresses these three challenges by estimating the impact of 15 billion-dollar disas-

ters’ “new news” on the bunching of mortgage originations and securitizations at the conforming

loan limit. Fannie Mae and Freddie Mac have adopted specific sets of observable rules when screen-

ing mortgages for purchase. One such rule is based on the size of the loan: the GSEs purchase loans

whose amount do not exceed a county- and year-specific conforming loan limit. This generates a

substantial discontinuity in lending and securitization standards, suggesting that agency securitiza-
1The Appendix Section 5 describes the determinants of guarantee fees using the Federal Housing Finance Agency’s

guarantee fee reports published between 2009 and 2018. Fannie Mae, Freddie Mac, and Ginnie Mae’s guaranteed a
total amount of $6.9t, more than double the volume of unsecuritized first liens ($3.23t). The non-agency share of
mortgage securitizations is about 4.96% as of 2019.
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tion has significant option value for lenders.2 Lenders’ perception of increased flood risk may lead to

more bunching. Billion-dollar events provide lenders with additional information about the location

of flood risk. Lenders can observe and use flood risk information in their underwriting and securiti-

zation decisions. In contrast, Fannie Mae and Freddie Mac do not adjust their securitization rules

or their guarantee fees in response to flood risk information. They rely on FEMA maps of Special

Flood Hazard Areas (the “100-year floodplain”) when requiring flood insurance. The prior literature

suggests that SFHAs do not typically match actual damage (Morrissey 2006, Kousky 2018); and

that a significant share of at-risk communities do not participate in the NFIP. A ‘market for lemons’

in climate risk could develop as lenders are able to securitize risky mortgages when they obtain new

information about local mortgage default. The paper identifies “new news” about flood risk by

estimating the heterogeneity of securitization responses depending on (i) the historical probability

of being affected by hurricanes since 1851 and (ii) whether the neighborhood is in FEMA’s 100-year

floodplain.

The paper’s identification strategy relies on estimating the impact of natural disasters on the

discontinuity in approval, origination, and securitization rates, as well as on the bunching in a

window around the conforming loan limit (±20%, ±10%, and ±5%). First, focusing on a tight

window allows the estimation to compare mortgages with arguably similar characteristics yet very

significant differences in securitization probabilities. Second, the paper uses a longitudinal panel at

the window with 5-digit zip code fixed effects, year fixed effects, pre- and post-treatment indicators,

and controls for the evolution of the conforming loan limit in the mortgage market independently of

the natural disaster. Thus the impact of the natural disaster on the discontinuity is estimated over

and above the baseline impact of the disaster, aggregate confounders, and year-level market-wide

fluctuations in the conforming limit. The specification provides a “placebo” test for the existence

of pre-trends in the four years prior to the event. Third, the conforming loan limit is county-

and year- specific, moving in arbitrary fashion and provides identification at different margins of

the distribution of houses, mortgages, and households. As the limits are set nationally either by

the FHFA or by Congress, they are less likely to be confounded by other regional discontinuities

that would also affect the mortgage market for loans of similar amounts. Fourth, the 5-digit zip
2DeFusco & Paciorek (2017) uses the discontinuity in interest rates at the limit to estimate borrowers’ elasticity

of demand with respect to interest rates.
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location of a hurricane is typically an idiosyncratic event when controlling for the history of hurricane

occurrence as well as the intensity of the hurricane season.3

The results suggest that after a billion-dollar event, lenders are significantly more likely to

increase the share of mortgages originated and securitized right below the conforming loan limit.

After a billion-dollar event, the difference in approval rates for conforming loans and jumbo loans

increases by up to 7.3 percentage points. The probability of securitization increases by up to 19.3

percentage points. The discontinuity in the number of originations at the limit increases by up

to 18.5 ppt 4 years after the event. This could be driven by either a retreat to safer mortgages

if conforming loans are safer or increasing adverse selection if the mortgages sold to the GSEs are

riskier. Evidence from the McDash dataset suggests that conforming loans are likely riskier than

jumbo loans and that adverse selection into the conforming loan segment increases after a natural

disaster: borrowers are more likely to experience foreclosure at any point postorigination; they are

more likely to be 60 or 120 delinquent, and they have lower FICO scores.4 Bank lenders that

originate conforming loans typically hold less liquidity on their balance sheet, and bank lenders

that originate conforming loans are less likely to be FDIC-insured commercial banks. Interestingly,

while the GSEs’ guarantee fee (paid by lenders) is a function of observable characteristics such as

FICO scores and loan-to-value ratios, there is likely significant unpriced unobservable flood risk in

agency RMBSs.

While analysis suggests no evidence of significant trends in the four years prior to a billion-

dollar event, there is a statistically and economically significant increase in securitization volumes

at the conforming loan limit in years following the event. The impact of the billion-dollar event

is significant at the limit and is not significant further away from the limit: a series of identical

regressions on a grid of points −5% to +5% of the limit reveals an impact on bunching at the

limit only, suggesting that the increasing bunching at the limit is due to the response of lenders.

This paper’s baseline result is economically significant: a billion-dollar event has a similar effect

on securitization activity as a 17% employment decline, which is approximately twice the standard

deviation of employment growth.

Evidence suggests that such selection into the conforming segment and the corresponding in-
3As such, the paper identifies what, in a weather event, is a statistical deviation from long-run climate

trends (Auffhammer, Hsiang, Schlenker & Sobel 2013).
4For contrasting evidence on securitization and loan performance, see Jiang, Nelson & Vytlacil (2014).

4



crease in securitization volumes are consistent with lenders learning about future flood risk from

the observation of past events (the learning hypothesis). The impact of disasters on conforming

loan origination volume is greater in neighborhoods that have a historically low frequency of hurri-

canes since 1851. Thus, a hurricane provides “new news” that may affect lenders’ internal forecasts.

Evidence from the literature (Hertzberg, Liberman & Paravisini 2018) suggests that while learning

by households would imply larger amounts of mortgage debt, lenders learning about the increased

risk originate smaller loans, consistent with this paper’s evidence. Evidence also suggests that the

effect of billion dollar events is likely smaller in Special Flood Hazard Areas, where flood insurance

is required.

The impact of billion-dollar events on securitization activity is estimated using five different sets

of data:5 6 The first is a national dataset of mortgage applications, originations, and securitiza-

tion purchases between 1995 and 2017 collected according to the Home Mortgage Disclosure Act

(HMDA). Such HMDA data can be matched to the neighborhood (Census tract) of the mortgaged

house. The second dataset is the McDash loan-level payment history dataset with approximately

65% of the mortgage market since 1989, including household FICO scores, foreclosure events, delin-

quency, prepayment, and with 5-digit zip code information. The paper’s analysis is conducted at

the 5-digit zip level throughout. Third, the treatment group of affected neighborhoods is estimated

by using the path and impact of hurricanes (wind speed data every 6 hours for all major hurricanes)

from NOAA’s Atlantic Hurricane Database HURDAT2, combined with high-resolution USGS ele-

vation and land cover data, and a survey of hurricane damages that identify disaster-struck coastal

areas. Fourth, FEMA’s National Flood Hazard Layer provides the boundaries of Special Flood

Hazard Areas, where flood insurance is mandated for agency mortgages. The combination of these

four data sources enables a neighborhood-level analysis of the impact of 15 billion-dollar events on

securitization activity, lending standards, and household sorting. The fifth and last dataset relates

to the lender’s identity, obtained by matching HMDA loan-level files with their transmittal sheets.

This enables an estimation of the differential response of bank and non-bank lenders.

This paper’s second and third challenges are to estimate whether lenders would originate risky

mortgages if the GSEs either did not securitize in areas at risk of flooding or charged guarantee
5The Appendix Section 8.1 provides practical implementation details. A full replication package using public data

is available from the corresponding author.
6Appendix Figure I displays the level of granularity of the McDash data used in this paper.
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fees that match the GSEs’ potential losses and whether Fannie and Freddie’s role incentivizes

borrowers to locate to flood-prone areas. The paper develops a model of mortgage pricing with

asymmetric information, household location choice, and the dynamics of mortgage default.7 The

paper’s discontinuity in securitization probabilities at the conforming limit is a quasi-experimental

source of identification for the structural parameters, in the spirit of indirect inference of Fu &

Gregory (2019) and Gourieroux, Monfort & Renault (1993). A key insight is that disaster risk (Barro

2009) substantially affects lenders’ mortgage payoffs over and above the other drivers of default

such as individual unemployment or divorce, which do not affect the payoff of foreclosure auctions.

Disaster risk is thus a key driver of bunching at the conforming loan limit. The model’s out-of-

sample simulations increase the probability of disaster risk and estimate the impact on approval

rates for mortgage applications, securitization rates for originated mortgages, location choices, and

default rates.

The simulations suggest that the the GSEs’ securitization activity, without increasing guarantee

fees, stabilizes the mortgage market with little change in interest rates and location choice prob-

abilities. In contrast, increasing disaster risk without the GSEs’ securitization activity8 leads to

substantial declines in mortgage credit supply, disincentivizing location choices within risky areas.

The model’s findings thus suggest that the GSEs partially act as a de facto substitute for the Na-

tional Flood Insurance Program outside of mandated flood insurance zones. The model simulations

also suggest that the GSEs do not provide significant incentives to either lenders or households to

choose different locations and mortgage amounts when facing increasing climate risk.

This paper contributes to three key strands of literature. First, the paper provides evidence

consistent with the literature on adverse selection in the mortgage securitization market (Downing,

Jaffee & Wallace 2009, Keys, Mukherjee, Seru & Vig 2010, Demyanyk & Van Hemert 2011, Keys,

Seru & Vig 2012, Adelino, Gerardi & Hartman-Glaser 2019). Such market is large: the amount of

debt guaranteed by the GSEs is $6.9t, comparable to the total amount of outstanding corporate

debt of non-financials.9 This paper suggests that when mortgage lenders cannot sell mortgages to
7We discuss Elenev, Landvoigt & Van Nieuwerburgh’s (2016) important insights on the phasing out of the the

GSEs in the model.
8Elenev et al. (2016) designs an important general equilibrium model that simulates a phasing-out of the GSEs.

This paper focuses on the impact of such phasing out on borrowing and location decisions within a city, where
neighborhoods have different flood risk levels.

9Q4 2019, Series TDSAMRIAONCUS of the Federal Reserve Bank of St Louis.
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the two GSEs, they have strong incentives to assess what risks are entailed by lending funds for

mortgages. Other papers suggest that, in contrast to the agency MBS market, the commercial

MBS market responds strongly to disaster risk (Garmaise & Moskowitz 2009). The results of this

paper suggest that the ability to securitize to the GSEs may weaken the discipline brought about

by the mortgage finance industry in fostering climate change adaptation. This paper focuses on

the defaults implied by the strongly correlated, arguably upward-trending climate risk that is likely

more difficult to hedge than idiosyncratic household-specific income shocks.10 Remedies to this

adverse selection include (a) the pricing of guarantee fees by Fannie and Freddie to reflect climate

risk, an extension of the seminal literature on the pricing of mortgage-backed securities (Boudoukh,

Whitelaw, Richardson & Stanton 1997) and (b) fintech approaches (Fuster, Plosser, Schnabl &

Vickery 2019), which may help securitizers integrate flood risk data in their underwriting process.

Such market pricing would take into account the ambiguous risk and heterogeneity among buyers

in their risk assessments (Bakkensen & Barrage 2017).

This paper also contributes to the literature analyzing the impact of natural disasters on bank

portfolio reallocation. Cortés & Strahan (2017) documents that banks reallocate capital to more

prosperous local markets in the aftermath of disasters. The mechanism at work here may be that

banks update their beliefs about future risk in the area that was recently hit. In our setting, lenders’

reallocation is affected by their option to securitize the loans and sell them to the GSEs at a fixed

price, the guarantee fee. In contrast to Cortés & Strahan (2017), this paper’s capital re-allocation

may generate inefficient risk sharing as flood risk remains unpriced in guarantee fees.

Finally, this paper contributes to the literature estimating the pricing of natural disaster risk

in the housing market. An expanding stream of the literature has studied the impact of natural

disaster risk on the equilibrium pricing of real estate (Bakkensen & Barrage 2017, Ortega & Tas.pınar

2018, Zhang & Leonard 2018), yet most houses are bought using credit with 11.2 trillion dollars

of outstanding debt as of 2019 (Goodman 2020). Mortgage credit supply affects the demand for

housing (Ouazad & Rancière 2016, Guren, Krishnamurthy & McQuade 2018, Ouazad & Rancière

2019, Guren & McQuade 2020). The structural model introduces the role of mortgage credit in

driving location choices in risky neighborhoods. In the simulation without the GSEs, disaster risk

leads to a decline in originations in risky neighborhoods.
10See Cotter, Gabriel & Roll (2015) for an analysis of the diversification of housing investment risk.
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2 Datasets and Treatment Area Geography

Estimating the causal impact of natural disasters on mortgage securitization and thus the transfer

of risk from lenders to the agencies requires matching local, neighborhood-level, measures of dam-

age due to these disasters, with data on mortgage applications, originations and securitizations.

Understanding which banks respond to the natural disaster requires a match between mortgage

originations and the lender’s identity and balance sheet. Finally, measuring the impact of “new

news” requires building a long-run history of hurricane damage. We describe the two main sets of

data used in this paper: natural disasters and mortgage credit. Additional details are provided in

Appendix Section 8.1.

2.1 Natural Disasters: Billion-Dollar Events and the Treatment Group

15 Billion-Dollar Events

The paper focuses on disasters that have caused more than 1 billion dollars in estimated damage.

The estimates come from Weinkle, Landsea, Collins, Musulin, Crompton, Klotzbach & Pielke’s

(2018) computations between 1900 and 2017 and suggest that the top 15 events are hurricanes. We

thus focus on hurricanes occurring between 2004 and 2012, which allows for (i) following hurricane

coordinates and wind radii at a granular level since 2004 and (ii) following mortgages for up to 4

years after the disaster, i.e., up to 2017. These events are presented in Table 1, in decreasing order

of normalized damage. Hurricane Katrina is the third costliest event over the entire 1900–2017

period, after the Great Miami Hurricane of 1926 and the Galveston Hurricane of 1900. The damage

is calculated as the product of the reported damage in current-year US dollars, the inflation ad-

justment, a real-wealth per-capita adjustment, and a county-population adjustment. Such damage

estimates encompass a broader range of damage than those of residential real estate. More details

are provided in Weinkle et al. (2018).11

11Appendix Section 1 presents evidence that billion-dollar disasters lead to increased mortgage default.
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Definition of Treated Areas

The Atlantic Hurricane Dataset of NOAA’s National Hurricane Center includes hurricanes’ geocoded

latitude/longitude position every six hours.12 The events post-2004 provide wind radii by speed at

this frequency, enabling the computation of the set of blockgroups within the 64 knot hurricane wind

path. We start with hurricanes post 2004 as these events’ wind speed radius is geocoded.13 This

wind speed maps naturally into the Saffir Simpson hurricane intensity scale (Simpson & Saffir 2007).

Damage to real estate property is unevenly distributed within any of the hurricane’s wind paths,

and substantially exceeds and/or does not match the boundaries of FEMA’s 100-year floodplain,

the Special Flood Hazard Areas (SFHAs).14 This is observable in the case of Hurricane Sandy, using

housing inspections performed by HUD. These data are provided as part of FEMA’s IA Registrant

Inspection Data. The file reports damages for blockgroups with 10 or more damaged units. The

inspector measured the height of the flooding, the highest floor of the flooding, and the height of

the flooding in that room (Ingargiola, Francis, Reynolds, Ashley & Castro 2013).15

We combine this damage data on observed damages from Hurricane Sandy with blockgroup-level

USGS elevation, National Land Cover Database data, and distance to the coastline. We build a

classifier to predict the granular location of damages due to any of the other 14 hurricanes. Elevation

data come from the USGS’s digital elevation model, at 1/3 of an arc second precision (approximately

10 meters). It predicts that blockgroups within the 64 kt wind path are hit if (i) their minimum

elevation is below 3 meters, (ii) they are within 1.5 km of wetland, and (iii) they are within 1.5

kilometers of the coastline. We use this criterion to build a blockgroup-level prediction of the set of

damages due to the 14 hurricanes.16

The set of blockgroups with predicted damages is displayed on Figure 1 for hurricane Sandy. It

is also estimated for the other 14 disasters. The dark gray area is the hurricane’s 64 kt wind path.
12Accessed in 2018.
13The geographic position of the hurricane’s eye is coded for all hurricanes since 1851. The dimension of the wind

speed radius is geocoded since 2004.
14“Most homes damaged by Harvey were outside flood plain, data show” Houston Chronicle, (Hunn, Dempsey &

Zaveri 2018). Three-fourths of houses damaged during Hurricane Harvey were outside of the 100-year floodplain
(Pralle 2019); 50% of the buildings in New York City affected by Sandy were outside of the 100-year floodplain.
Kousky (2018) discusses the design of flood insurance rate maps. Kousky & Kunreuther (2010) also discusses the
mismatch between flood insurance maps and realized flooding in St Louis.

15Sandy Damage Estimates Based on FEMA IA Registrant Inspection Data.
16A simpler alternative approach for the definition of the treatment group uses NOAA’s publicly-available Sea,

Lake, and Overland Surges from Hurricanes (SLOSH) dataset, which provides storm surge heights as predicted by a
computational model of fluid dynamics. Results are similar and described in Appendix Section 4.
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The blue area is the set of coastal areas or areas close to wetlands. The red boundaries correspond

to blockgroups whose elevation is less than 3 meters. This paper’s analysis proceeds at the 5-digit

zip code level, the common geography for both climate and mortgage data. A zip is treated if more

than 40% of its blockgroup surface area has predicted damage. This paper’s results are robust to

the use of different thresholds for the definition of treated zip codes.

2.2 Mortgage-Level Data and Geographic Match

Home Mortgage Disclosure Act Data

The first data source is the universe of mortgage applications and originations from the Home

Mortgage Disclosure Act, between 1995 and 2017 inclusive. The data are collected following the

Community Reinvestment Act (CRA) of 1975 (codified as 12 U.S.C. 2901, Regulations 12 CFR parts

25, 228, 345, and 195) and includes information from between 6,700 and 8,800 reporting institutions

on between 12 and 42 million mortgage applications annually. The law mandates reporting by both

depository and non-depository institutions. It mandates reporting by banks, credit unions, and

savings associations, whose total assets exceed a threshold, set to 45 million USD in 2018,17 with a

home or branch office in a metropolitan statistical area; which originated at least one home purchase

loan or refinancing of a home purchase loan secured by a first lien on a one-to-four-family dwelling;

and if the institution is federally insured or regulated. The following non-depository institutions are

required to report: for-profit institutions for which home purchase loan originations equal or exceed

10 percent of its total loan originations or 25 million USD or more, whose assets exceed 10 million

dollars, or who originated 100 or more home purchase loans.

HMDA data include the identity of the lender,18 loan amount, the income, race, and ethnicity

of the borrower, the census tract of the house, the property type (1-4 family, manufactured housing,

multifamily), the purpose of the loan (home purchase, home improvement, refinancing), owner-

occupancy status, preapproval status, and the outcome of the application (denied, approved but

not accepted, approved and accepted, withdrawn by the applicant).

The geographic location of a mortgage in HMDA is pinned down by its census tract. The
17The minimum asset size threshold is typically adjusted according to the CPI for urban wage earners (CPI-W),

is currently set by the Consumer Financial Protection Bureau, and published in the Federal Register.
18A unique identifier, the respondentid, can be matched to the RSSDID of the Federal Reserve of Chicago’s

Commercial Bank Data using Transmittal Sheets.
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census tract of the loan is matched with the corresponding ZCTA5s. This determines the treatment

status of an area (whether hit by a billion-dollar event). While HMDA enables an analysis at the

census tract level, the McDash data described below provides 5-digit zip codes. We use ZCTA5s

consistently throughout this paper in both the HMDA and the McDash analysis.19

This paper focuses on conventional loans, i.e., any loan other than FHA, VA, FSA, or RHS

loans, on one to four family housing (other than manufactured housing), and on owner-occupied

home purchase loans. We consider loan purchases (i.e., securitizations) for mortgages originated

in the same year or in previous years. We exclude the small number of mortgages with applicant

incomes above 5 million dollars or with loan-to-income (LTI) ratios above 4.5 or below 1.

McDash Data

The McDash data files are collected by Black Knight Financial. They follow each loan’s history

from origination and/or transfer of servicing rights to either full payment, prepayment, foreclosure,

bankruptcy, or another transfer of servicing rights. The dataset follows about 65% of the market

on average across observation years, and includes the borrower’s FICO score, the interest rate, the

interest rate type, the term, the loan amount, the property value, the LTV, the debt-to-income

ratio, and other features of the mortgage.

This paper’s McDash data include the home’s 5-digit zip code. Appendix Figure I shows that

counts are well distributed across 5-digit zip codes. The postal 5-digit zip codes are matched to

their corresponding ZCTA5 Census identifier. We use the terms zip or ZCTA5 interchangeably in

the paper. The 5-digit zip code is matched to the treatment group definition presented earlier in

this section.

This paper uses the following filters for the McDash data and excludes home equity loans,

focusing on new loans originated by the client organization, as opposed to transfers of servicing

rights. It includes conventional loans with or without private mortgage insurance (PMI). It focuses

on loans for purchase, and excludes loans for construction, rehabilitation, remodeling, rate/term

refinance, cash-out refinance and other refinancing. It includes mortgages for single family homes.
19While ZCTA5s and zip codes differ marginally, the results using either HMDA at the ZCTA5 level or McDash

at the zip code level are similar, suggesting that these differences do not have significant qualitative implications.
See “ZIP Code Tabulation Areas (ZCTAs)”, from the U.S. Census Bureau. In what follows, zip code and ZCTA5 are
used interchangeably.
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In this paper, the McDash data cover the same time period as that for the Home Mortgage Disclosure

Act data.

3 Empirical Strategy

3.1 Identification Challenges

Estimating the impact of natural disasters on lenders’ decisions to transfer risk by securitization is

challenging for a number of reasons.

First, mortgages that are securitized differ in a number of observable and unobservable dimen-

sions from mortgages that are originated and held. In the HMDA data, the median loan amount

for mortgages that are originated and securitized is approximately $62,000 higher than for those

that are originated and held. The median income of borrowers of mortgages originated and held

is 4.4% higher than those that are originated and securitized. The share of white borrowers is

also 1.6 percentage points higher for loans that are originated and held. The share of mortgages

with missing income is also 3.9 percentage points lower for securitized mortgages. The uneven dis-

tribution of securitization volumes across states also implies a correlation between state laws and

the characteristics of mortgages (Pence 2006). These strong baseline differences in simple observ-

able characteristics of originated-and-securitized vs. originated-and-held mortgages suggest that

estimating the impact of disasters on the overall probability of securitization is unlikely to yield a

causal impact.

Second, the mortgage market experiences shifts due to financial conditions independent from

natural disasters and related to macroeconomic conditions (Bassett, Chosak, Driscoll & Zakrajšek

2014) such as the global savings glut (Bernanke 2015), changes in consumer income (Ackerman,

Fries & Windle 2012) due to a variety of factors such as shifts in industrial specialization, or due to

lenders’ losses in other parts of the United States or in other credit segments (Ramcharan, Verani

& Van den Heuvel 2016). The secular growth of the share of non-bank lenders (Center 2019) may

lead to increases in securitization volumes, as bank lenders tend to originate and hold significantly

more than non-bank lenders.

Third, households and lenders may anticipate which areas are at risk of flooding (independently

of SFHA areas) and may take on either less debt (if lenders tighten lending standards in this area

12



prior to the event) or more debt (if households load on more debt in expectation of low future levels

of equity).

Fourth, there may be general equilibrium spillovers from treated areas to untreated areas, as

borrowers’ demand for “flood-safe” locations increases; such general equilibrium effects of place-based

shocks may follow the mechanisms of Sieg, Smith, Banzhaf & Walsh (2004).

Fifth, housing prices may respond to natural disasters and lead to shifts in the demand for debt.

Hence shifts in the amount of securitized debt may be due to shifts in house prices at constant

lending standards and constant LTV. In addition, housing prices may respond to the supply of

credit (Favara & Imbs 2015, Ouazad & Rancière 2019). Lenders may also aid in rebuilding by

providing credit (Cortés 2014).

Hence an ideal experiment consists of presenting a lender with otherwise identical mortgages in

both observable and unobservable dimensions and estimating the impact of a natural disaster on

their securitization activity. While this ideal experiment presents practical challenges, the set of

securitization rules that the GSEs use presents us with an opportunity to estimate an impact that

may arguably address a number of the identification concerns.

3.2 Identification Strategy

This paper combines three features to identify the impact of natural disasters on mortgage securi-

tization.

First, the paper focuses on the set of mortgages in a narrow window around the conforming loan

limit. The conforming loan limit is the maximum loan amount that Fannie Mae and Freddie Mac

will securitize. When focusing on loans in the window around the conforming loan limit, observable

differences in borrower and mortgage characteristics narrow significantly. For instance, in the ±5%

window, the difference in the share of white borrowers is only 0.1 percentage points, in the share

of black borrowers of only 0.1 ppt, in the share of missing incomes is 1.3 ppt (compared to 3.9 ppt

in the overall sample), and in applicant incomes is 3.4% (compared to 4.4%) in the overall sample.

In the same window, the share of securitized mortgages experiences a sharp drop from 86% to less

than 11%, as loan amounts cross the discontinuity.

Second, the paper combines such a bunching strategy with a longitudinal panel data approach,

estimating the impact of natural disasters on bunching and discontinuities while controlling for year
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fixed effects (for the overall evolution of the mortgage market), time fixed effects (for the evolution

of the control group around the natural disaster), neighborhood fixed effects (as neighborhoods hit

by a natural disaster may be observationally different) as well as controlling for the evolution of

bunching and discontinuities at the conforming limit in the U.S. mortgage market as a whole.

While the intensity of hurricane seasons is typically forecast by NOAA in its Atlantic Hurricane

Season Outlook, issued in May, it is difficult to predict the specific location of damage caused

by hurricanes. Indeed, NOAA suggests that a large share of the year-to-year variation in local

hurricane risk is idiosyncratic. “NOAA’s Seasonal outlook [...] predicts the number of [...] major

hurricanes expected over the entire Atlantic basin during the six-month season. But that’s where the

reliable long-range science stops. The ability to forecast the location and strength of a landfalling

hurricane is based on a variety of factors, details that present themselves days, not months, ahead

of the storm.20.”

Third, the conforming loan limit varies both across years and across counties in discrete and, to

a large extent, in an arbitrary fashion that is not tailored to the specific composition or housing of an

area. In the sample, 91% of counties experience shifts in their associated county-specific conforming

limit at some point in the time period. These shifts are large: when a county goes from general

to high-cost, its limit increases by up to $320,775. Conforming loan limits go from $203,150 in the

early part of the sample to $625,500 for high-cost counties in the last years of the sample. Such

policy-driven variation in the limit creates a natural experiment in shifting the marginal house and

the marginal borrower at which bunching occurs.

Finally, the paper’s identification strategy estimates the impact of “new news” by allowing for a

heterogeneous response of lenders at a granular geographic level. The response of lending standards

to a billion-dollar event varies according to the difference between the geographic footprint of each

hurricane across 5-digit ZIP codes and the 167-year history of hurricane frequency across such

ZIP codes. In this sense the paper highlights what, in weather events, is a statistical deviation

compared to long-run climate trends (Auffhammer et al. 2013). The methodology and results for

this heterogeneity test are presented in Section 4.4.
20https://www.noaa.gov/stories/what-are-chances-hurricane-will-hit-my-home
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3.3 Descriptive Evidence at the Conforming Loan Limit:

Bunching, Discontinuities, and Selection

This section presents cross-sectional descriptive evidence at the conforming loan limit, prior to the

presentation of the paper’s main econometric specification.

Regulatory Framework

Section 1719 of the National Housing Act empowers government-sponsored enterprises to set the

standards that determine eligibility of mortgages for securitization. This paper focuses on the

time-varying and county-specific observable, the conforming loan limit, set by the Federal Housing

Finance Agency or by Congress (Weiss, Jones, Perl & Cowan 2017). Three interesting features

enable the identification of the impact of such limit on the market equilibrium: first, the limit is

time-varying, thus enabling an estimation of the impact of the change in the limit on origination,

securitization volumes. Second, the limit is also county-specific after 2007, implying that the limit

bites at different margins of the distribution of borrower characteristics. Finally, the limit for second

mortgages (last column) is high, allowing homeowners to combine a first conforming mortgage with

a second mortgage to increase the combined loan-to-value (CLTV) ratio, while maintaining a loan

amount within the upper bound of the conforming loan limit.

The observable loan characteristics of the government-sponsored Enterprises use also pin down

the guarantee fee that is charged to primary lenders in exchange for purchasing the mortgage. The

loan level price adjustment matrix (LLPA) maps the applicant’s credit score and loan-to-value ratio

into a guarantee fee ranging in 2018 for fixed-rate mortgages (FRM) from 0% (for applicants with

a FICO score above 660 and an LTV below 60%), to 3.75% (for applicants with a FICO score

below 620 and an LTV above 97%). Specific guarantee fees also apply to adjustable rate mortgages,

manufactured homes, and investment property, where fees can reach 4.125% as of 2018.

At the Conforming Loan Limit: Discontinuities in Approval Rates, Securitization

Rates, and Adverse Selection

If guarantee fees were substantially above the maximum risk premium that lenders are ready to pay,

then securitization volumes would not affect origination volumes. Figure 2 presents evidence that
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lenders’ ability to securitize mortgages by selling them to GSEs has option value. It uses data from

the Home Mortgage Disclosure Act. In each year and each county, loans with an amount between

90 and 110% of the conforming loan limit are considered. Such loans are grouped into bins of

0.5%, and the number of applications is computed. The blue line is the curve fitted using a general

additive model. The vertical axis is log-scaled. Figure (a) suggests that there is a discontinuity

in the volume of applications at the limit, with significant bunching exactly on the left side of

the limit: the count of applications exactly at the limit is up to twice the volume of applications

on the right side of the limit. Figure (b) suggests that, despite the higher count of applications,

the approval rate of applications is substantially higher for conforming loans, with a discontinuity

of 4 to 8 percentage points. Figure (c) shows a large discontinuity in the fraction of securitized

originations, of up to 50 percentage points at the limit. Figure (d) matches the HMDA application

and origination file to the balance sheet of bank lenders. The figure suggests that lenders’ liquidity

is 1.1 ppt higher for originators of jumbo loans, who originate and hold such loans. This is consistent

with Loutskina & Strahan (2009) as the ability to securitize loans led to the expansion of mortgage

lending by banks with low levels of liquidity. In addition, the preferential capital treatment given

to securitized products incentivizes mortgage securitization.

The evidence presented in this figure also suggests that private label securitizers (PLSs) are an

imperfect substitute for the GSEs. Indeed, while PLSs do take on the risk of nonconforming, i.e.

jumbo, loans, the size of the market is smaller and fees are higher, which generates a discontinuity

at the conforming limit.

Descriptive Evidence of Negative Selection into Securitization in the Cross-Section

The evidence present in HMDA and in publicly available GSE loan files does not provide sufficient

information to assess the welfare impact of the GSEs’ securitization program. Indeed, different

policy implications would follow from either positive or negative selection into securitization, i.e.

the self-selection of safer or riskier borrowers into securitization.

Figure 3 presents evidence from McDash’s loan-level files. Such files provide data on the FICO

credit score at origination, and on detailed payment history, which are typically absent from publicly

available files. Bunching in loans at the conforming loan limit is also present in this different dataset.

Figure 3 builds and presents four indicators of ex post mortgage performance. Indeed, McDash
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reports monthly updates on each loan covered by its network of servicers. Loans are either current,

delinquent (90 or 120 days) or in foreclosure, or the household is going through a bankruptcy process.

Figure (a) suggests that conforming loans are more likely to foreclose at any point after origination.

The difference is about 2 to 1.4 percentage points depending on the window (+-10% down to 0.5%).

Figure (b) presents a larger discontinuity in hazard rates. Figure (c) suggests that conforming loans

are more likely to be 60 days delinquent at any point. The most visually striking discontinuity is

in voluntary prepayment: Figure (d) suggests that conforming loans are more likely to experience

a voluntary payoff. Such prepayment is a risk for the lender, which forgoes interest payments.

Overall, the evidence presented in Figure 3 is consistent with the negative selection of borrowers

into conforming loans. Such negative selection occurs along unobservable dimensions: while GSEs’

rules ensure positive selection along observable characteristics, residual variance in borrower quality

is sufficient to offset the national selection criteria enforced by federal regulators.

3.4 Econometric Specification

The identification strategy focuses on the impact of billion dollar events on bunching at the con-

forming loan limit. It leads to the following econometric specification, where the outcome variable

is the approval of a mortgage, the securitization of an approved mortgage, the characteristics of the

mortgage (LTI, term), the characteristics of the applicant (income, credit score, and race), and the

payment history of the mortgage (foreclosure, 30-, 60-, 90-, or 120-day delinquency at any point,

and voluntary payoff).

Outcomeit = α · BelowConformingLimitijy(t,d) + γ · BelowConformingLimitijy(t,d) × Treatedj(i)

+

+T∑
t=−T

ξt · Treatedj(i) × Timet=y−y0(d)

+
2016∑

y=1995

ζy · BelowConformingLimitijy(t,d) ×Yeary(t)

+
+T∑

t=−T
δt · BelowConformingLimitijy(t,d) × Treatedj(i) × Timet

+ Yeary(t,d) + Disasterd + ZIPj(i) + εit, (1)
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The regression is at the mortgage level i. j(i) is the zip code of mortgage i. d = 1, 2, . . . , D indexes

disasters. y0(d) is the year of disaster d. y(t, d) = t + y0(d) is the year when the number of years

relative to disaster d’s occurrence is t. This relative time runs from t = −4 years prior to the event

to t = +4 years after the event. In each sum
∑+T

t=−T , the summation excludes t = −1, the reference

year. The regressions consider mortgages for which the loan amount is in a ±20%, ±10%, or ±5%

window around the conforming limit, | log(Loan Amount)it − log(Conforming Limit)iy(t,d)| < 0.20,

0.10, or 0.05, where log(Conforming Limit)iy(t,d) is the year- and county-specific conforming limit

(Weiss et al. 2017). Below Conforming Limitijy(t,d) is equal to 1 when the loan amount is below

such conforming loan limit.

This specification addresses the key identification challenges presented in subsection 3.2. Year

fixed effects control for the overall evolution of mortgage characteristics across years, which may be

a concern for hurricanes occurring at the peak of the housing boom or at the trough of the housing

bust. The coefficients ξt identify the evolution of mortgage and borrower characteristics in the

treated areas, both below and above the conforming loan limit. The specification also controls for

the overall evolution of the discontinuity at the conforming-loan limit. The coefficients ζt identify

the overall evolution of the conforming loan limit discontinuity independently of its evolution driven

by each natural disaster. Five-digit zip code fixed effects ZIPj(i) capture the average differences in

mortgage characteristics across locations. Disaster fixed effects Disasterd capture disaster-specific

differences in averages. They are identified separately from zip fixed effects as a neighborhood may

appear in multiple disasters (e.g. Katrina and Ivan).

The paper’s coefficients of interest are δt. They measure the evolution of the conforming loan

limit in the treated areas over and above the evolution of the conforming loan limit overall during

the same time period. In particular, the δt for t ≥ 0 measure how the natural disaster causes an

increase or a decline in, for instance, approval rates for mortgages on the left side of the conforming

loan limit compared to the right side of the conforming limit.

A threat to identification could be the presence of time-varying local confounders preceding

the disaster; this would occur if, for instance, mortgage credit anticipates the location of natural

disasters. The predisaster coefficients δt, t < 0 provide a placebo test for such predisaster trends.

As we estimate the coefficients on a window around the conforming loan limit, the specification

measures the impact of the disaster on the discontinuity in that location-specific and time-specific
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window.

The control group is the set of mortgages (i) in the zip codes in states of the Atlantic coast

and the Gulf of Mexico, i.e. 18 states from Maine to Texas, and (ii) not affected by any of the 15

billion-dollar events, i.e. not in one of the 15 treatment groups defined in Section 2. The control

group contributes to the identification of the baseline discontinuity α, the evolution of the jumbo

discontinuity ζt, the year fixed effects Y eary, and the fixed effects of control group neighborhoods.

The observations of the control group have a value of t conventionally set to t ≡ −1 while the year

y varies between 1995 and 2017. The next section discusses the robustness of the results to the

alternative definitions for the control group.

Standard errors are two-way clustered by zip code and by year, as in Cameron, Gelbach & Miller

(2008).

The robustness checks presented later in this paper replace the “Below the Conforming Limit”

variable by “Belowx% of the ConformingLimitit” where x ranges from −2.5% to +2.5%, to estimate

whether the impacts are at the discontinuity rather than far from the discontinuity.

In specification 1, when Outcomeit is the approval of mortgage application i, increases in ap-

proval rates may not correspond to increases in the total number of approved applications. The

aggregate implications of this paper’s mechanism can be documented using results on the number

of approved, originated, and securitized loans. Bunching regressions can provide evidence on the

number of conforming loans vs jumbo loans. These bunching regressions estimate the impact of

disasters on the number of mortgage approvals, originations, and securitizations in the conforming

segment relative to their total number in the window around the conforming loan limit.

#Below Limitjt −#AboveLimitjt
#Below Limitjt + #AboveLimitjt

= γv · Treatedj +

+T∑
t=−T

ξvt · Treatedj × Timet

+ Yearvolume
y(t,d) + Disastervolume

d + ZIPvolume
j + εvjt, (2)

where #Below Limitjt (#AboveLimitjt) is the number of mortgages with loan amounts in the 10%

segment below (above) the conforming limit. The coefficients of interest are the ξvt , t ≥ 0, the impact

of the natural disaster for each post-disaster year t = y − y0(d). As in the previous specification,

t = −5, . . . ,+4. The coefficients ξvt , t < 0, are placebo tests for the existence of trends in the
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discontinuity prior to the disaster. The coefficient γv measures the average difference in the size of

the discontinuity between the treated and untreated zip codes. The year fixed effects Yearvolume
y(t,d)

measure the overall evolution of the discontinuity in the treatment and control groups. Disaster-

specific fixed effects Disastervolume
d for d = 1, 2, 3, . . . , 15 capture disaster-specific differences in the

magnitude of the discontinuity. Zip code fixed effects are included. Standard errors are double-

clustered by zip code and by year to account for common unobservable shocks.

4 Main Results

4.1 Baseline Impacts

We now turn to the estimation of the paper’s baseline specification (1), the impact of billion-dollar

disasters on the discontinuity in approval, origination, and ultimately securitization rates at the

conforming loan limit. The estimation results are presented in Table 2. The unit of analysis is

a mortgage application in columns 1–6, i.e., for the approval decision (columns 1–3) and for the

origination decision (columns 4-6).21 The unit of analysis is an originated mortgage in columns 7–9

for the securitization decision as the dependent variable. For each dependent variable, we estimate

the results including only mortgages whose loan amounts are within 20% of the conforming loan

limit (columns 1,4, and 7), within 10% of the conforming loan limit (columns 2,5, and 8), and

within 5% of the conforming limit (columns 3,6, and 9). The results using the 2.5% window are also

available, statistically significant, and in line with the other results. Each regression also includes

the controls of specification (1): treatment dummies for each time period t = −4, . . . ,+4, year

fixed effects, disaster fixed effects, ZCTA5 fixed effects, and year fixed effects interacted with the

“below conforming limit” indicator that captures the evolution of the mortgage market’s overall

discontinuity at the limit.

Placebo coefficients suggest little evidence of significant pretrends in the four years that precede

the billion-dollar disaster: the coefficients for the “Below Limit” variable interacted with the pre-

disaster year indicator variables are not significant at 10%, except for the −4 variables in columns

7,8, and 9, yet the −3 and −2 coefficients are not significant and are even negative. Approval,
21In all columns the dependent variable is 0,1. The results of the estimation of a conditional logit with fixed effects

are similar and available from the authors. We choose the linear probability model for the sake of simplicity.
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origination, and securitization rates in the year before the disaster (t = −1) are set as the reference

year.

Post-event variables display statistically and economically significant impacts of the disaster:

approval rates increase between 2.4 and 7.3 percentage points in years +1 to +3 after the disaster.

Origination rates increase by between 2.4 and 8.0 percentage points. Securitization rates increase

by between 4.5 and 19.3 percentage points. For statistically significant coefficients, the impact on

securitization rates conditional on originations is systematically higher than the impact on origi-

nation and approval rates: while higher securitization rates contribute to the increase in approval

rates, there is also an independent movement at the intensive margin to securitize a larger share of

the usual flow of mortgages.

Importantly, securitization rates both stay significant and increase for the 1 to 4-year range after

the disaster. This is depicted in Figure 4a. In contrast, approval and origination rates experience

some decline in year +4. This is driven by (i) the higher numbers of mortgage applications (ii) with

lower credit quality in year +4. We describe both features below in detail.

Table 3 presents evidence that the year +4 decline in approval and origination rates is driven by

the increase in the number of mortgage applications. When focusing on discontinuities in numbers

rather than in rates, the discontinuity in approvals, originations, and securitizations is large and

significant. In this table, the unit of analysis is a zip code × year (of which there are between

173,255 and 171,115). The dependent variable takes values between 0 (no discontinuity) and 1

(100% discontinuity). We consider discontinuities for which there are at least 20 mortgages on

either side, and observations for 2 years before and 2 years after the event. This table uses the

coarsest 5% window around the conforming loan limit, as in previous tables’ columns (3), (5), and

(9). The discontinuity in approval numbers increases up to 18.1 percentage points in year +4 after

the disaster. The discontinuity in origination numbers increases by up to 18.5 percentage points.

The discontinuity in securitization numbers increases by 17 percentage points 4 years after the

event. The regression in numbers also does not display a significant pretrend before the event. The

coefficients are depicted in Figure 4b.

Overall, the results suggest that while there is no evidence of pretrends, disasters tend to lead

to significantly higher securitization, approval, and originations in the conforming segment vs. in

the jumbo segment, regardless of the size of the window from 20% to 5%.
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4.2 Impact of Disasters on Adverse Selection into Securitization

The results of specification (1) suggested a greater volume of applications at the limit on the

conforming segment after a natural disaster. This section presents results that suggest that the

creditworthiness of such applicants also declines after such a disaster.

As HMDA data do not contain ex-post performance measures or credit scores, we turn to the

McDash dataset to estimate specification (1). Table 4 presents the results on the 1,697,650 obser-

vations of the McDash dataset with a ±10% window.22 As in the previous regressions, standard

errors are double-clustered at the zip code and year levels and include the same set of controls.

Results suggest that the discontinuity in credit scores increases significantly after the event, with

borrowing at the conforming limit having a credit score 3.4 points lower than in the jumbo seg-

ment. Mortgage maturity becomes marginally longer. However, it is in the measures of mortgage

performance that the results are perhaps more economically significant. Six measures of ex post

mortgage performance are used: foreclosure at any point, 30-, 60-, 90-, 120-day delinquency, and

voluntary payoff. The results suggest that the discontinuity in performance at the conforming limit

is significantly worse after the disaster. The foreclosure probability is 4.9 percentage points higher

3 years after the event. The probability of a 60-day delinquency at any point after origination is 2.2

percentage points higher. The probability of a 90-day delinquency is 2.4 percentage point higher,

the probability of a 120-day delinquency is 1.3 percentage points higher. The probability of an early

prepayment (voluntary payoff) is 2.3 percentage points lower. The results also suggest the absence

of pretrends in the McDash dataset as in the HMDA dataset (first row, t = −2 coefficients).

4.3 Robustness Checks

A Test of the Identification Strategy:

Effects Far From the Conforming Loan Limit vs. Effects at the Conforming Loan Limit

A second set of regressions identifies whether the estimated δt, for t = −2, . . . , 3, are due to obser-

vations at the conforming loan limit or far from the limit. The results of specification (1) may be

driven by observations away from the conforming loan limit. For instance, declining house prices

may lead to an increase in the volume of conforming loans in a wide segment below the conforming
22Results with the 20% and the 5% windows available from the authors.
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loan limit rather than affecting discontinuity at the limit.

We thus design an additional test that applies to our main specifications (1) and (2). In the case

of specification (1), we run 15 separate estimations where the Below Conforming Limitit variable is

replaced by an indicator for Below p% of the Conforming Limitit, with p ranging from 95% to 105%

of the conforming limit, on a grid of 15 equally spaced points. This yields estimates of the treatment

effects δt(p) for 15 values p ∈ [95%, 105%], which should be highest at p = 0 if the discontinuity

at conforming limit is driving our result. For specification (2), the discontinuity in numbers, we

rebuild the dataset of discontinuities 15 times with 15 different thresholds with the same range of

p.

The results of these estimations are presented in Figure 6, Panels (a), (b), (c) for specification (1):

for the approval rate, the origination rate, and the securitization rate. The impacts are presented

in the year following the disaster and in the 1st, 2nd, and 3rd years after the disaster. The results

for specification (2) are presented in panels (d), (e), and (f).

The results suggest that the impact of billion-dollar disasters is greatest at the conforming limit,

with approval rates increasing significantly at the conforming limit but not far from it in the year

following the disaster. The impact of a disaster grows significantly over time, up to 3 to 5 times

as high as the impact in the year of the disaster; such higher treatment happens exactly at the

conforming loan limit. This suggests that the results are driven by the discontinuity in lenders’

ability to securitize at the limit rather than an across-the-board increase in the volume of loans in

the conforming segment.

Impact of the Control Group on Results

An appropriate control group provides counterfactual observations, i.e. observations where the state

of the mortgage market prior to the natural disaster is comparable in both control and treatment

zip codes. The paper suggests the absence of significant pretrends in both specifications (1) and

(2). Another condition is that the control group should not be affected by general equilibrium

price spillovers. Such violations of the SUTVA23 identification assumption would occur if mortgage

lending and securitization standards in unaffected areas responds in a general equilibrium fashion

to mortgage lending and securitization standards in affected areas.
23For a discussion of the Stable Unit Treatment Value Assumption, see Rubin (1986).
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To test for such confounding effects, we run the regression excluding control group zip codes

in CBSAs (µSAs and MSAs) for which there is at least one zip code hit. This leaves 328 CBSAs

in total, 53 in the treatment group, 276 in the control group (vs. 328 in the control group in

the baseline sample). The results are not significantly different than those presented in Table 2,

suggesting that spillovers from the treatment to the control group are not driving the results.

Difference-in-Differences with Multiple Treatments

Another concern may stem from the multiple treatments occurring at different points in time.

Goodman-Bacon (2018) suggests that neighborhoods that experience early treatment are (inade-

quately) part of the control group for neighborhoods that are treated later in the period of analysis.

With only 18% of the dataset treated, the fixed effects for years, neighborhoods, and the time dum-

mies are identified on the 82% of the untreated observations, suggesting that this concern may be

less relevant than with state-level difference-in-differences. However Goodman-Bacon’s (2018) point

may affect zip code tabulation areas that experienced multiple treatments in the 2005-2012 period,

in which case a subset of post-disaster observations would serve as controls for future treatments.

To assess the robustness of the results to this concern, we run two different sets of regressions. We

consider zip codes as treated only for their first hurricane in the 2005-2012 period. We also consider

a similar regression for zip codes treated only for their last hurricane in the 2005-2012 period. The

results are not significantly different than those presented in Table 2.

4.4 Documenting the Mechanism:

New News, the Insurance Mandate

Heterogeneous Effects by the Local Frequency of Hurricanes

If lenders learn about the future location of disasters when observing the geography of a new

disaster’s damages, then the impact of disasters on securitization probabilities may be higher in

areas with a long history of hurricanes. We build such a history to estimate the heterogeneous

impact of disasters.

The hurricane history is built as follows. For each hurricane since 1851 in NOAA’s Atlantic

Hurricane Database, we obtain the coordinates of the hurricane’s path and wind radius. When such
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a radius was not available, e.g., for 19th century hurricanes, we impute it using the typical 64kt

wind radii of the area. For each blockgroup of the coastal states from Maine to Texas, we count the

number of times such a hurricane’s wind path crosses the blockgroup. The historical frequency is

aggregated from the blockgroup to the zip code level. This provides us with a zip-code-level measure

of hurricane frequency since 1851, ranging from 0 (for northern and western Texas) to 0.405, or 4.1

times per decade (for the New Orleans basin, Florida, the eastern part of the Carolinas). This is

depicted in Appendix Figure B. Hence, hurricanes occurring in Texas tend to provide more “new

news” than hurricanes occurring in the New Orleans or South Florida basins.24 The granularity

of the measure combined with the use of fixed effects in the regression, however, allows for an

identification based as much on within-MSA heterogeneity in frequency as on broad differences in

hurricane frequencies across states or MSAs.

Table 5 presents the coefficients of the interaction of Below Limitit × Treatedjt with such his-

torical frequency, in the paper’s main specification (1). The historical frequency is demeaned. We

present the results for the ±10% window and report the interaction. The results suggest that indeed,

there is a smaller response of approval and origination rates (respectively, columns (1) and (2)) in

areas with a high frequency of hurricanes. In zip codes in the upper quartile of hurricane frequency

(0.046 or 0.46 hurricanes per decade), the impact is approximately half the baseline impact in the

average zip code: for originations in year +3, the impact is −0.507×0.046 = 0.023, or 2.3 percentage

points lower than in the baseline of +5.9 percentage points.

Heterogeneous Effects in Special Flood Hazard Areas

The two government-sponsored enterprises require flood insurance for agency-backed mortgages in

Special Flood Hazard Areas.25 An SFHA is in principle defined as an area that will be inundated by

a flood having a 1-percent chance of being exceeded in any given year. This requirement has been

in place since the 1973 Flood Disaster Protection Act26 but take-up has been limited and declining
24One approach to “new news” is by considering lenders and borrowers’ beliefs about the local probability of

flooding.
25Fannie Mae Selling Guide, B7-3-07 Flood Insurance Coverage Requirement
26Section 103, (3), (B) “Government-Sponsored Enterprises for Housing. -- The Federal National Mortgage Associ-

ation and the Federal Home Loan Mortgage Corporation shall implement procedures reasonably designed to ensure
that, for any loan that is-- [...] purchased by such entity, the building or mobile home and any personal property
securing the loan is covered for the term of the loan by flood insurance in the amount provided in paragraph (1)(A).”

25



since 2006 and evidence suggests significant mismatches between affected areas and SFHAs.27 The

flood insurance coverage extends up to $250,000, which is below the conforming loan limit by at

least $167,000 and up to $375,500 between 2005 and 2016.

The paper’s main result, i.e. the shift toward the conforming segment, should be lower in SFHAs

for at least two reasons: (i) the flood insurance mandate implies higher costs for households willing

to borrow in the conforming segment, and thus, lenders may be less able to shift demand away from

the jumbo segment, and (ii) SFHA delineations are well known to households, who can display the

National Flood Hazard Layer and its SFHAs using a publicly available website. Flooding in SFHAs

is less likely to bring new information on disaster probabilities. Flooding occurs regularly outside

of SFHAs. Appendix Figure A zooms in on parts of the New York MSA to illustrate potential

discrepancies between realized flooding and the SFHA. 28

We test the hypothesis that the paper’s baseline impact is smaller in SFHA areas by building

a zip-code-level measure of the share of a zip code that is in the SFHA of the National Flood

Hazard Layer. The bottom panel of Table 5 presents the results when adding the interaction of

Below Limitit × Treatedjt with the [0, 1] share of a zip code in an SFHA. Three of the coefficients

are negative and significant at 10 and 5%, suggesting evidence that the impact of disasters on

mortgage securitization is smaller in SFHAs.

5 Mortgage Credit Supply in Disaster Areas without the Govern-

ment Sponsored Enterprises: A Structural Approach

We need a model to assess the impact of disaster risk on mortgage origination and securitization

volumes when catastrophic risk raises the risk of default above idiosyncratic default risk. We

also need a model to simulate the impact of a potential withdrawal or decline of the government-

sponsored enterprises’ securitization activity.

This section introduces a stylized model of monopolistic mortgage pricing and approval with (i) a

differentiated menu of locations exposed to flood risk, and a flood-safe outside option, (ii) the sorting
27See footnote 14 .
28While flooding outside of the 100-year floodplain can occur without a shift in the 1% probability, the mismatch

between the 100-year floodplain and the SFHA can update mortgage market’s participants’ beliefs about flooding in
a specific area.
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of households by their idiosyncratic default risk (e.g. divorce and unemployment) into locations and

into the outside option, (iii) the lender’s choice of mortgage pricing in each location, (iv) the lender’s

option of securitizing mortgages in areas where loan amounts are less than the conforming limit,

and (v) the lender’s decision to approve or deny mortgages based on households’ idiosyncratic risk

in each location.

The model generates bunching and adverse selection at the conforming limit and thus replicates

the “structure-free” discontinuities estimated in Section 4 for the overall sample. The amount of

bunching depends on the sorting of households’ idiosyncratic risk in each location. The amount of

bunching also depends on catastrophic risk. Catastrophic flood risk affects all locations except the

outside option. Out-of-sample increases in the probability of flood risk generate larger bunching and

larger adverse selection as in the paper’s main tables 2 and 3. Yet it does not generate an overall

decline in mortgage credit supply when the GSEs maintain their securitization policy. In contrast,

in the counterfactual world where the GSEs withdraw their securitization activity, increases in the

probability of flood risk lead to substantial declines in mortgage credit supply in flood risk areas.

5.1 A Structural Model of Mortgage Pricing with Asymmetric Information

There are j = 1, 2, . . . , J neighborhoods, each with amenity level zj . Each of the i ∈ [0, N ] house-

holds chooses a neighborhood j. Such a continuum of households differs by their idiosyncratic

default driver ε ∈ (−∞,+∞). Such ε is not observable by lenders.

We model a lender’s mortgage pricing choices. The lender’s opportunity cost of capital is denoted

κ. The lender offers a fixed rate mortgage with loan amount Lj and maturity T in each location,

and chooses an interest rate rj in each location.29 The lender chooses a menu of interest rates: the

lender sets the interest rate rj in this segment j to maximize the joint profit over the j locations.

After choosing a location-mortgage contract pair j ∈ {1, 2, . . . , J}, households pay a mortgage

with payment mj(rj , T, Lj) from t = 1, 2, . . . , T . They can default every year t = 1, 2, . . . , T or keep

paying and deriving utility from neighborhood amenities. For the sake of simplicity we abstract

from (i) dynamic prepayment and (ii) households’ dynamic location choices.30

29For the sake of clarity we present the structural approach with fixed rate mortgage (FRM) contracts, but the
model is extended and estimated with other contracts such as ARMs and IO loans.

30Key papers describe households’ dynamic location choices for a given menu of mortgage options (Guren et al.
2018, Guren & McQuade 2020). This paper focuses on the description of the endogenous menu of mortgage options.
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The annual default probability δ(ε,Bjt, pjt) ∈ [0, 1] is driven both by household fundamentals ε,

and by the current loan-to-value (LTV), i.e. the ratio of the household’s mortgage balance Bjt by

the house price pjt in year t after origination. Flood risk, which occurs with probability π, causes

default. The latent variable Default∗jt(ε) measures the household’s propensity to default absent a

flood, so that its annual default probability is δ = (1− π) · P (Default∗jt(ε) > 0) + π, with:

Default∗jt(ε) = αdefault log (Bjt/pjt) + σεε+ ηjt (3)

where ε is the household-specific unobservable driver of default and ηjt is extreme-value distributed.

The balance evolves according to the usual formula of mortgage amortization:

Bjt+1 = (1 + rj)Bjt −mjt (4)

An important driver of mortgage default in equation (3) is the current house price. A household

whose balance substantially exceeds the current value of its house is more likely to default (Foote,

Gerardi & Willen 2008). Each lender forecasts the path of future prices. At the time of origination,

the lender expects that, absent a flood, house prices follow a geometric Brownian motion with

constant drift α and volatility σ as is typical in the real estate literature (Bayer, Ellickson &

Ellickson 2010). The novelty in the dynamics of prices below is that, with probability π ∈ [0, 1], a

flood occurs (Djt = 1) in a neighborhood, which affects real estate values in the neighborhood.31 A

flood lowers prices from pjt to (1− ρ)pjt, where ρ ∈ [0, 1] is the share of the house’s value affected

by the disaster.

pjt+1 = (1− ρDjt) · pjt · (α+ σ∆Wjt) (5)

where α is the house price trend (in logs), σ the price volatility. ∆Wjt is an i.i.d normal shock,

∆Wjt ∼ N(0, 1). Both α and σ are assumed to be common knowledge, while disaster risk π and

the price impact ρ are uncertain.
31Disaster occurrence is i.i.d. across time periods and across locations, so that Djt ⊥ Dj′t′ whenever j 6= j′ or

t 6= t′.
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Lenders’ Optimal Menus of Contracts The lender chooses a vector of interest rates r to

maximize its total profit, coming from each of the J locations:

Π(r1, r2, . . . , rJ) =
J∑

j=1

Πj(r1, r2, . . . , rJ) (6)

where the profit in location j is driven by the default probability, the mortgage payment, and the

fraction P (j) of households choosing j:

Πj =
{
Ej [ξ] ·m(r∗j , T, Lj)− Lj + Ej [φ(δ)]

}
· P (j) + ε (7)

where the term Ej [ξ] · m(r∗j , T, Lj) is the stream of mortgage payments coming from location j,

multiplied by the share P (j) of borrowers choosing location j. The term −Lj is the lender’s cost of

providing the funds at t = 1. The term Ej [φ(δ)] is the recovery value in case of default. The final

term ε is an unobservable driver of profit. The multiplier ξ of mortgage payments depends on the

expected default rate, so:

Ej [ξ] ≡ Ej

[
T∑
t=1

Πt
s=1(1− δjs(ε))

(1 + κ)t

]
(8)

with κ the lender’s opportunity cost of capital. For a specific location j, the probability of default

of households is as follows:

Ej [ξ] =

∫
ξ(ε)f(ε|j)dε (9)

where f(ε|j) is the consequence of households’ sorting and is derived in the next few paragraphs.

In the lender’s profit (7), the term Ej [φ(δ)] is the expected revenue generated by a foreclosure sale

in case of default, equal to
∑T

t=1 Πt
s=1(1− δjs)δjt min {Bjt, pjt} /(1 + κ)t. If the household defaults

due to a natural disaster or to idiosyncratic shocks (Default∗jt(ε) > 0), a foreclosure auction yields

a payoff min {Bjt, pjt}, which is at most equal to the current mortgage balance.

At this point, it is clear that households’ location choices are a key input in lenders’ optimal

mortgage menu.

Households’ Location and Contract Choices A household with unobservable default propen-

sity ε chooses its location based on local amenities zj (including the size of the house) and contract
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features rj , Lj . It maximizes the indirect utility:

Uj(ε) = γzj − (α+ βε) · log(Total Costj) + ηj(ε). (10)

The deterministic part of utility Uj(ε) is denoted Vj(ε). In this expression, log(Total Costj) is the

equivalent of the log(pricej) in urban economics discrete location choice models. Here, as households

pay a mortgage, the total cost is affected by the maturity of the mortgage and the interest rate. The

total cost is computed using the endogenously determined equilibrium interest rates r1, r2, . . . , rJ

as well as the equilibrium prices p1, p2, . . . , pJ for a fixed-rate mortgage of maturity T = 30 years.32

ηj is extreme-value distributed, as is common in the discrete choice literature. As households

with worse risk (higher ε) are less likely to pay the total cost of the mortgage, the household’s

sensitivity to the total cost log(Total Costj) depends on its unobservable default driver ε through

the interaction coefficient β. The household can also choose an outside option of not purchasing

in the city, which yields utility U0. Such utility is not affected by the catastrophic risk of flooding.

Hence the probability of choosing j for household ε is simply:

f(j|ε) =
exp(Vj(ε))∑

k exp(Vk(ε)) + exp(V0)
(11)

The probability of choosing neighborhood j is denoted f(j|ε) and is a simple multinomial logit

that depends on the deterministic part of utility Uj(ε). Households have the outside option of not

purchasing a house, which yields utility V0 ≡ 0 by convention.

In turn the expected distribution of unobservable household characteristics ε in a given location-

contract j is given by using Bayes’ rule:

f(ε|j) =
f(j|ε)f(ε)

f(j)
, (12)

which is a key ingredient in the lender’s calculation of its discounting factor ξ described in equation 9.

The sensitivity of this distribution of unobservables to the menu of interest rates is a key ingredient

in the lender’s first-order condition: shifts in each interest rate rj affect households’ sorting in the
32The log of the LTV and the log of the household’s time discount factor are both absorbed by the constant of the

specification.
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unobservable dimension ε across options j = 1, 2, . . . , J and thus the lender’s profit coming from

each location j.

The Securitization Option The introduction of the securitization option is as follows. For

mortgages whose amount Lj is below the conforming limit L̃, the lender can sell the mortgage

to the agency securitizers at a guarantee fee ϕ at the time of origination.33 In such a case, the

multiplier becomes a simple function ξ(ϕ) of the guarantee fee. This multiplier is independent of

the default rate and of the revenue Ej [φ] of a foreclosure sale.

Π̃h
j =

{
Ej [ξ] ·m(r∗j , T, Lj)− Lj + Ej [φ(δ)]

}
· P (j) + εhj (13)

Π̃s
j =

{
ξ(ϕ) ·m(r∗j , T, Lj)− Lj

}
· P (j) + εsj (14)

As the lender picks loans for securitization after observing ε, it securitizes mortgages for which the

profit Π̃h
j = Πh

j + εhj of originating and holding (equation (7)) is lower than the profit Π̃s
j = Πs

j + εsj

when originating and securitizing. Then,

P (Approval)j = P
(

max
{

Πh
j + εhj ,Π

s
j + εsj

}
≥ 0
)
, (15)

P (Securitization)j = P
(

Πs
j + εsj ≥ Πh

j + εhj

∣∣∣max
{

Πh
j + εhj ,Π

s
j + εsj

}
≥ 0

)
(16)

where Π is the observable part of profit. Both the approval rate and the securitization rates by

location are observable quantities in Home Mortgage Disclosure Act data.

Monopoly Pricing with Differentiated Locations We consider the partial equilibrium of the

lender’s price setting and household sorting across locations. By offering a menu of interest rates,

the lender practices second-degree price discrimination.

Definition 1. An equilibrium is a J-vector r∗ of interest rates for each location-contract j such that

(i) the lender chooses a menu r∗ = (r1, r2, . . . , rJ) of interest rates in each location j to maximize

its total profit given households’ location choices; (ii) in each location, the lender approves loans

for which the profit of origination is positive; (iii) in each location, the lender securitizes loans for
33See Adelino et al. (2019) for an empirical discussion of the dynamic process of securitization.
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which the profit of securitization is greater than the profit of holding; and (iv) each household ε

chooses a location-contract j∗(ε) that maximizes his utility.

The structure of this problem is in the class of problems first introduced by Mirrlees (1971)

and developed in the case of monopoly pricing by Maskin & Riley (1984).34 This setup could be

extended to multiple lenders.

Identification at the Conforming Loan Limit We need to estimate structural parameters

in three structural equations: the drivers of household default (3), the drivers of household sort-

ing (10), and the drivers of lenders’ profit of originating and holding (13) as well as originating and

securitizing (14).

Mortgage default is observed for each loan amount and for each household income in the McDash

financial dataset. The set of household characteristics borrowing in each neighborhood is observed

in Home Mortgage Disclosure Act data. The approval rates and the securitization rates are observed

in HMDA data. The interest rate of mortgages is observed in the McDash data.

We jointly estimate the default parameters
(
αdefault, σε

)
from equation (3), the utility param-

eters (γ, α, β) from (10), and the lender’s profit parameters
(
κ, V ar(εh), V ar(εs)

)
from (13) and

(14) that match, across neighborhoods, (i) the observed default rates, (ii) the share of originations,

(iii) the probability of approval, and (iv) the probability of securitization. These three sets of pa-

rameters are stacked into a single vector θ = (θdefault,θutility,θprofit). The four sets of predictions

are stacked in a vector and denoted Predictions, and the corresponding observations are denoted

Observations.

The following parameters are set exogenously. The conforming loan limit is set as in Section 2.

The price trends α and volatility σ are estimated using Zillow’s zip-code-level time series. The LTV

at origination is set to 80%. As the estimation is performed on a majority of neighborhoods outside

of flood-prone areas, the probability of catastrophic risk is initially set to π = 0 in the estimation

stage; and increased in counterfactual simulations.

The estimation of parameters is performed in a 90-110% window around the conforming loan
34A recent structural model of business lending with asymmetric information is presented in Crawford, Pavanini &

Schivardi (2018).
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limit. We use a two-step GMM approach:

θ̂ ≡ argmin (Predictions−Observations)′Ψ (Predictions−Observations) (17)

where Ψ = Id in the first step and Ψ is the positive definite matrix that minimizes the variance of

the estimator in the second step. This empirical approach of estimating parameters in a window

around the conforming loan limit is similar to one recently used in Fu & Gregory (2019).

5.2 Model Fit and Simulations of Increasing Disaster Risk

Figure 7 compares the predictions of the model with the realizations for the largest lender observed

in HMDA in the 2004-2016 period. The gray points correspond to observations, and the black points

to the realizations of the model. In each figure, the horizontal axis is the difference between the log

loan amount in the location and the log of the conforming loan limit. It ranges from 90 to 110% of

the conforming loan limit.

The model reproduces the discontinuities in approval rates, securitization rates, default proba-

bilities that were described in Section 3.3, “Descriptive Evidence at the Conforming Loan Limit.”

By replicating the higher default rate of conforming loans (Figure 7c), the model also accounts for

the adverse selection into the conforming segment. In the model, this is generated as households

with worse (higher) εs tend to be more likely to bunch at the conforming loan limit. The model

does not account for private label securitization activity above the conforming loan limit. However,

it captures the higher approval rate, the higher securitization rate, the higher default rate in the

conforming segment.

5.2.1 Increasing Disaster Risk

We then simulate the out-of-sample impact of increasing disaster risk from π = 0 to π = 1% on

approval rates, securitization rates, and default rates in each neighborhood. The price impact of

natural disasters in equation (5) is set to ρ = 20%.35 Households’ propensity to default, households’

preferences, and lenders’ profit parameters are kept constant, but optimal interest rates, approval
35These out-of-sample comparative statics can also be performed for an increase of π from 0 to 1% with a full

price impact ρ = 1. Such analysis is presented in Appendix Section 6. The simulation’s stylized facts are robust to
different values of ρ.
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rates, and securitization rates are recomputed in response to the increase in π.36

Figure 8 compares the baseline scenario (black points) with π = 0 with the scenario with π = 1%.

This value of disaster risk matches the assumed risk of flooding in the 100-year floodplain.

As expected, this increasing disaster risk causes a rise in expected default rates across all neigh-

borhoods (subfigure (b)). Default increases from 0.15-0.3% to levels above 1.1%. The approval rate

declines (subfigure (a)), but such a decline is mitigated by the increase in securitization rates, that

move up in the conforming segment. The model thus generates the increase in the discontinuity of

approval rates observed in the quasi-experimental analysis (Table 2, columns (1)–(3)), as well as

the increase in the discontinuity in securitization rates (same Table, columns (7)-(9)).

This suggests that the transfer of disaster risk to agency securitizers mitigates the impact of

greater disaster risk on mortgage approvals. Hence the share of originations in each location (for

this lender) changes only marginally, suggesting that households’ location patterns would be more

affected without such securitization options. Hence the GSEs’ securitization option is likely to

benefit households who wish to locate in flood zones.

5.2.2 The Withdrawal of the GSEs

A simulation of a similar growth in disaster risk is performed this time while simultaneously removing

the securitization option. In particular, the simulation can establish whether the lender would reduce

lending volumes, increase interest rates, in the absence of the option to sell risky mortgages. Elenev

et al. (2016) predicts that underpriced government mortgage guarantees lead to more and riskier

mortgage originations. This paper’s model makes spatial predictions: will households move away

from homeownership by choosing the “flood-safe” outside option? Will households choose locations

with lower loan amounts?

Figure 9 presents the results of such counterfactual simulation where the lender cannot securitize

to the GSEs. The orange points depict the equilibrium in the mortgage market when lenders do

not have the option to securitize and disaster risk is introduced with a probability π = 1%.

The withdrawal of the GSEs causes a substantial decline in approval rate in the conforming
36Increases in disaster risk π could also affect the dynamic of prices (α, σ) in general equilibrium. In this paper’s

empirics, Appendix Section 3.2 suggests that controlling for prices in the main specification does not affect the
paper’s results. Hence this counterfactual simulation should be taken as reflecting the evolution of the mortgage
market separately from the evolution of the housing market.

34



segment (subfigure (a)). This stands in contrast with the results of the previous analysis: while

the discontinuity in approval rates increases with the option to securitize (as in the paper’s main

result of Table 2), such discontinuity declines when there is no option to securitize. It also causes

a substantial decline in the overall fraction of households who choose to buy a home (an increase

in the share choosing the outside option) as the total volume of originations shifts down. Without

the securitization option (the probability of securitization falls to zero in subfigure (b)), there is

no evidence of adverse selection of households into the conforming segment as there is a smooth

relationship between default rates and loan amounts (subfigure (c)). Overall simulations suggest

that the GSEs’ securitization activity mitigates the impact of increasing disaster risk on the number

of households purchasing a home.

5.3 An Endogenous Guarantee Fee when Facing Rising Flood Risk

The model can be used to estimate the evolution of an endogenous guarantee fee that maintains

the securitizers’ profit constant even as disaster risk increases. The key question is whether such an

endogenous fee would affect the supply of mortgage credit by lenders in the face of a rising disaster

risk probability π.

In the model, the profit-neutral guarantee fee ϕ∗(π) is such that the securitizers’ profit is unaf-

fected by the probability of disaster risk π, i.e. is equal to the profit when disaster risk probability

is zero, π = 0. In other words, the securitizers’ total profit across all J locations is equal in either

the zero-probability of disaster risk scenario and in the π = 1% scenario:

ϕ∗(π) such that
J∑

j=1

Πsec
j [ϕ∗(π)] =

J∑
j=1

Πsec
j [ϕ(0)] (18)

Securitizers’ profit in location j can be calculated as follows. Securitizers receive borrowers’ mortgage

paymentmj , and face a default probability δjt in each period. In case of a foreclosure, the securitizer

receives the proceeds of the foreclosure auction. Hence the present discounted value of mortgage

payments and foreclosure auction is Ej [ζ] ·mj +Ej [ψ(δ)]. In this expression, Ej [ζ] is defined as the

multiplier in j given the default probability of mortgages securitized in j. This differs from the earlier

multiplier Ej [ξ] for all originated mortgages, regardless of whether they are held or securitized. The

expected proceeds of the foreclosure auction Ej [ψ(δ)] for securitized mortgages also differ from the
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expected proceeds of the foreclosure auction Ej [φ(δ)] for all originated mortgages in j.

Securitizers ‘pass through’ mortgage payments back to the lenders regardless of default, and

receive a guarantee fee ϕ, a fraction of the mortgage payment. The profit of the securitizers in

location j is thus:

Πsec
j = Ej [ζ] ·mj + Ej [ψ(δ)]−

T∑
k=0

(
1− ϕ
1 + κ

)k

mj (19)

The table below estimates the endogenous guarantee fee ϕ∗(π) defined in equation (18) when the

probability of disaster risk increases smoothly from π = 0 to π = 1.5%.

Disaster Risk π 0.0% 0.25% 1.0% 1.25% 1.5%

Guarantee Fee ϕ∗(π) 0.40% 0.44% 0.56% 0.59% 0.65%

Actual guarantee fees, detailed every year in the FHFA’s Loan Level Price Adjustment matrix,

vary according to the borrower’s credit score and LTV. Yet this simulation provides an essential

mechanism suggesting that credit supply would decline in flood zones as disaster risk increases

when the guarantee fee is allowed to adjust, a finding that should be robust to the introduction of

heterogeneous guarantee fees.

The increase in guarantee fees has an important consequences for the overall stability of the

mortgage market, in a mechanism similar to Elenev et al. (2016). The increase in guarantee fee

causes lenders to hold their mortgages more frequently. They hence become more careful about

screening household-specific unobservable default risks. As the guarantee fee ϕ increases, (i) fewer

mortgages are transferred to the GSEs and (ii) the overall pool of originated mortgages becomes

safer. This can be seen within the model. The distribution of the unobservable default risk ε for

originated mortgages (both held and securitized) is, by Bayes’ law:

f(ε|Originated) =
P (Originated|ε)f(ε)

P (Originated)
, (20)

where f(ε) is the distribution of the unobservable default risk, f(ε|Originated) is its distribution

for originated mortgages, and P (Originated|ε) is the probability of origination. Hence the pool of

originated mortgages will become safer when ϕ goes up if the probability of origination declines by
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more for households with a higher ε.

∂2P (Originated|ε)
∂ϕ∂ε

≤ 0 (21)

This is a consequence of the lender’s behavior described in equations (15) and (16). Indeed,

P (Originated|ε) = 1 − P (Π̃h
j ≤ 0)P (Π̃s

j ≤ 0). Hence ∂2P (Originated|ε)/∂ϕ∂ε = −∂P (Π̃h
j ≤

0)/∂ε∂P (Π̃s
j ≤ 0)/∂ϕ, which is negative as the probability of denial P (Π̃h

j ≤ 0) is increasing in

ε and the probability P (Π̃s
j ≤ 0) of holding (not securitizing) the mortgage is increasing in the

guarantee fee ϕ. Overall, while low guarantee fees lead to more transfer of risk to the Government

Sponsored Enterprises, it also leads to less screening over household-specific default risk, and more

risk in the overall pool of originated mortgages.

Guarantee fees are not the only policy tool. The Government Sponsored Enterprises initiated

a Credit Risk Transfer program in 2012. Credit Risk Transfers can potentially alleviate concerns

about the climate risk borne by Fannie Mae and Freddie Mac as they allow a transfer of risk from

Fannie and Freddie to private sector investors such as investment banks, hedge funds, and other

third parties (Finkelstein, Strzodka & Vickery 2018). CRTs also provide a pricing of agency MBS

risk independently of the guarantee fees set every year by the Federal Housing Finance Agency that

regulates Fannie and Freddie. While the CRT program provides Fannie Mae and Freddie Mac with

a way to transfer risk back to the private sector, the program faces significant challenges described

in Online Appendix Section 2.

6 Conclusion

This paper describes a significant mispricing in a large debt market where market incompleteness

stems from non-comprehensive flood insurance coverage,37 and where securitization policies do not

charge fees related to flood insurance risk. Such mispricing implies that the two securitizers Fannie

Mae and Freddie Mac may bear a substantial share of the increasing climate risk. Evidence presented

in the paper’s Appendix Section 7 and in key papers (Garnache 2019, Issler, Stanton, Vergara-Alert

& Wallace 2019) suggests that this mechanism might not be limited to hurricane storm surge risk,
37Levine & Zame (2002) shows that aggregate risk (as opposed to idiosyncratic risk) has substantial consequences

when markets are incomplete.
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but could also apply to wildfire risk.

The Government Sponsored Enterprises support liquidity in the secondary U.S. mortgage mar-

ket to facilitate access to homeownership, but they may also encourage lenders to “originate and

distribute” their climate risk; and encourage households to locate in flood risk areas. A 30-year

fixed rate mortgage contract signed in 2020 matures in 2050, within the forecasting horizon of the

IPCC’s climate change scenarios.

The ambiguity of climate risk probabilities and the correlation of natural disaster shocks may

spark a new research field at the frontier of empirical finance and asset pricing. Correlated defaults38

may involve the development of new financial techniques for the diversification of climate risk as

the volume of at-risk loans increases. Unpriced climate risk may lead to the existence of a large

set of arbitrage opportunities, including in the Mortgage Backed Securities market, in addition to

those highlighted during the credit boom of the 2000s (Gabaix, Krishnamurthy & Vigneron 2007).

Hence this paper’s conclusions should be of interest to regulators (Carney 2015, Carney 2016)

and stakeholders interested in monitoring the systemic climate risk held onto financial institutions’

balance sheets.
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Figure 1: Treatment Area Geography – The Case of Hurricane Sandy

This figure presents the treatment area geography for Hurricane Sandy. A neighborhood is in the
treatment group if: (i) its minimum elevation is less than 3 meters, (ii) its distance to the coastline
or its distance to wetland is less than 2 km, and (iii) if it lies in the 64kt wind path. Elevation
from USGS’ digital elevation model. Distance to wetland from the Land Cover dataset. Wind speed
from the Atlantic Hurricane data of the National Hurricane Center. The treatment group is at the
intersection of the red and blue areas. Description of the construction of the treatment group in
Section 2.1.
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Figure 2: Descriptive Statistics – Baseline Discontinuities at the Conforming Loan Limit – HMDA
Analysis

These figures present the estimates of the impact of the conforming loan limit on the log count of
applications, the approval rate, the securitization rate, and the liquidity ratio of the lender. The black
points are the value for each 1 ppt bin in the window around the conforming loan limit. The blue
lines are the predictions from a generalized additive model. The red dotted line is the conforming
loan limit. The horizontal axis is the difference between the log loan amount and the log conforming
loan limit. The conforming loan limits are year- and county-specific. Appendix Table A presents the
corresponding regressions and the statistical significance of the discontinuities.
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Figure 3: Descriptive Statistics – Default and Prepayment Around the Conforming Limit – McDash
Data Analysis

These figures estimates delinquency, foreclosure, and voluntary payoff probabilities around the con-
forming loan limits. Appendix Table B presents the corresponding regressions and the statistical
significance of the discontinuities.
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(b) Hazard Rate of a Payment Incident (Delinquency,
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Figure 4: Main Results – Impact of Billion-Dollar Events

This figure presents (i) the coefficients of interest in specification (1) with securitization as the
dependent variable, and (ii) the coefficients of interest in specification (2) with the discontinuity
in the number of securitizations as the dependent variable. The bottom figure presents results for
OCC- and FRS-regulated lenders, that are more likely to arbitrage between “originate-and-hold” and
“originate-and-distribute.” The bars are 95% confidence intervals.
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Figure 5: Result for OCC and FRS Regulated Lenders – Impact of Billion-Dollar Events

(a) Evolution of the Probability of Securitization
(Specification (1))

−4 −2 0 2 4

−
0.

1
0.

0
0.

1
0.

2
0.

3

Years relative to the Billion Dollar Disaster

D
is

co
nt

in
ui

ty
 in

 #
 (

%
)

(b) Evolution of the Discontinuity in the Number
of Securitizations (Specification (2))

−4 −2 0 2 4

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

0.
20

Years relative to the Billion Dollar Disaster

D
is

co
nt

in
ui

ty
 in

 #
 (

%
) 

−
 A

ge
nc

y 
1 

D
ep

en
de

nt
 : 

se
cu

rit
iz

ed

47



F
ig
ur
e
6:

R
ob

us
tn
es
s
C
he
ck

–
A
rt
ifi
ci
al
ly

Sh
ift
in
g
th
e
P
os
it
io
n
of

th
e
D
is
co
nt
in
ui
ty

T
hi
s
fig

ur
e
pr
es
en
ts

th
e
re
su
lts

of
th
e
re
-e
st
im

at
io
n

of
bo
th

sp
ec
ifi
ca
ti
on

s
(1
)
an

d
(2
)
.

T
he

ve
rt
ic
al

ax
is

is
th
e
δ t

(r
es
p.

ξv t
),

th
e

ho
ri
zo
nt
al

ax
is

is
th
e
th
re
sh
ol
d.

T
he

lin
e
is

dr
aw

n
us
in
g
th
e
ou

tc
om

e
of

15
di
ffe

re
nt

re
gr
es
si
on

s
ea
ch
,
w
he
re
B
el
ow

L
im
it

is
re
pl
ac
ed

by
B
el
ow

T
h
re
sh
ol
d
,
w
it
h
a
th
re
sh
ol
d
se
t
ac
co
rd
in
g
to

th
e
ho
ri
zo
nt
al

ax
is
.

R
ob

us
tn
es
s
C
he

ck
fo
r
Sp

ec
ifi
ca
ti
on

(1
)
–
D
is
co
nt
in
ui
ti
es

in
L
en

di
ng

an
d
Se

cu
ri
ti
za
ti
on

St
an

da
rd
s

(a
)
A
pp

ro
ve
d.

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.020.000.020.040.060.08

th
re

sh
ol

d

coeff1

(b
)
O
ri
gi
na

te
d.

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.020.000.020.040.060.08

th
re

sh
ol

d

coeff1

(c
)
Se

cu
ri
ti
ze
d
co
nd

it
io
na

lo
n
or
ig
in
at
ed

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.020.000.020.040.060.08

th
re

sh
ol

d

coeff1

R
ob

us
tn
es
s
C
he

ck
fo
r
Sp

ec
ifi
ca
ti
on

(2
)
–
D
is
co
nt
in
ui
ti
es

in
A
pp

ro
va
l,
O
ri
gi
na

ti
on

,S
ec
ur
it
iz
at
io
n
N
um

be
rs

(d
)
D
is
co
nt
in
ui
ty

in
A
pp

ro
va
lN

um
be

rs
.

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.10−0.050.000.050.10

th
re

sh
ol

d

coeff1

+
1 

ye
ar

+
2 

ye
ar

s
+

3 
ye

ar
s

+
4 

ye
ar

s

(e
)
D
is
co
nt
in
ui
ty

in
O
ri
gi
na

ti
on

N
um

be
rs
.

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.10−0.050.000.050.100.15

th
re

sh
ol

d

coeff1

+
1 

ye
ar

+
2 

ye
ar

s
+

3 
ye

ar
s

+
4 

ye
ar

s

(f
)
D
is
co
nt
in
ui
ty

in
Se

cu
ri
ti
za
ti
on

N
um

be
rs
.

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

−0.10−0.050.000.050.100.15

th
re

sh
ol

d

coeff1

+
1 

ye
ar

+
2 

ye
ar

s
+

3 
ye

ar
s

+
4 

ye
ar

s

48



Figure 7: Structural Modeling – Model Fit: Computed Equilibrium at Estimated Parameters vs.
Observations

This set of figures compares the predictions of the estimated model of optimal origination, securitiza-
tion, and mortgage pricing. The lender chooses interest rates, makes mortgage approval decisions,
and securitizes mortgages optimally given households’ self-selection and future default probabilities.
In the graphs below each gray point comes from either HMDA data (subfigures (a), (b)) or from
McDash data (subfigure (c)). The black points are the predictions of the estimated model.

(a) Probability of Approval (b) Probability of Securitization

(c) Default Probability
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Figure 8: Structural Modeling – Impact of Increasing Disaster Risk on the Equilibrium of the
Mortgage Market – with the GSEs’ Securitization Activity

Keeping the cost of capital, neighborhood amenities, household preferences, and the dynamics of
default constant, these figures present the simulation of an increase in disaster risk π on the equi-
librium of the mortgage market. This is described in Section 5.2.1. The black points correspond to
π = 0%, and the red points are for π = 1%.
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Figure 9: Structural Modeling – Increasing Risk and the Withdrawal of the GSEs

Keeping lenders’ parameters, household preferences, and the dynamics of default constant, these
figures simulate the impact of increasing climate risk and, simultaneously, the withdrawal of the
option to securitize to the GSEs. The black point correspond to the initial equilibrium, with no
disaster risk and the option to securitize. The orange points correspond to the new equilibrium with
a probability of disaster risk of π = 1% and no option to securitize to the GSEs. This is described
in Section 5.2.2.
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Table 1: Billion-Dollar Events

This table describes this paper’s 15 ‘billion-dollar’ natural disasters occurring between 2004 and 2012.
These are used as a series of natural experiments. Damage calculations from Weinkle et al.’s (2018)
data base. Events are ranked in decreasing order of their damages. The zip-code-level treatment
group for each billion-dollar event is described in Section 2.1.

Normalized PL‡
Year Name From To Category States USD b$, 2018

2005 Katrina 25-Aug 30-Aug 5 FL, LA, MS, AL $116.88
2012 Sandy 30-Oct 31-Oct 3 NY $73.49
2008 Ike 12-Sep 14-Sep 4 TX, LA $35.15
2005 Wilma 24-Oct 24-Oct 5 FL $31.90
2004 Charley 13-Aug 14-Aug 4 FL, SC $26.93
2004 Ivan 12-Sep 21-Sep 5 AL, FL $25.89
2004 Frances 03-Sep 09-Sep 4 FL $16.48
2005 Rita 20-Sep 24-Sep 5 LA, TX $14.89
2004 Jeanne 15-Sep 29-Sep 3 FL $13.57
2011 Irene 26-Aug 28-Aug 3 NC $10.79
2008 Gustav 31-Aug 03-Sep 4 LA $5.45
2005 Dennis 04-Jul 18-Jul 4 FL, AL $3.54
2005 Ophelia 09-Oct 18-Oct 3 NC $2.48
2012 Isaac 21-Aug 03-Sep 1 LA $2.36
2008 Dolly 20-Jul 27-Jul 1 TX $1.48

‡PL: Pielke Landsea methodology, described in Weinkle et al. (2018).
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Table 3: Impact of Billion-Dollar Events on the Discontinuity in the Number of Approvals, Origi-
nations, Securitizations in the Conforming Segment vs. the Jumbo Segment

This table presents the estimates of the impact of billion-dollar events on the discontinuity in mort-
gage numbers (approvals, originations, and securitizations) at the conforming limit, specification (2).
Mortgages with amounts in the ±5% window around the conforming loan limit are considered in ev-
ery year and every zip code between 1995 and 2016 inclusive. The unit of analysis here is a zip
code×year. We consider zip code×tear observations with mortgages for at least 2 years before and
after the event, and with a minimum of 20 loans. The conforming loan limit is determined annually
and differs between high-cost and general counties. Standard errors are 2-way clustered at the zip
code and year levels. The control group is the set of zip codes of Atlantic states and states of the
Gulf of Mexico, from Maine to Texas.

Dependent variable:
Discontinuity in:

Applications Approvals Originations Securitizations

±5% ±5% ±5% ±5%
(1) (2) (3) (4)

Treatedjt=−4 0.059 0.059 0.070 0.085
(0.050) (0.050) (0.054) (0.052)

Treatedjt=−3 0.079 0.079 0.087 0.074
(0.049) (0.049) (0.056) (0.059)

Treatedjt=−2 0.039 0.039 0.025 −0.0001
(0.038) (0.038) (0.044) (0.039)

Treatedjt=0 −0.067 −0.067 −0.071 −0.050
(0.043) (0.043) (0.044) (0.043)

Treatedjt=+1 −0.002 −0.002 0.008 −0.008
(0.040) (0.040) (0.050) (0.049)

Treatedjt=+2 0.094∗ 0.094∗ 0.093∗ 0.068
(0.047) (0.047) (0.052) (0.054)

Treatedjt=+3 0.161∗∗∗ 0.161∗∗∗ 0.151∗∗∗ 0.171∗∗∗
(0.043) (0.043) (0.047) (0.046)

Treatedjt=+4 0.181∗∗∗ 0.181∗∗∗ 0.185∗∗∗ 0.170∗∗∗
(0.043) (0.043) (0.047) (0.049)

Additional Controls See Specification (2).
Year f.e., Disaster f.e., ZIP f.e.

Observations 173,255 173,255 173,034 171,115
R2 0.650 0.650 0.646 0.628
Adjusted R2 0.647 0.647 0.643 0.626

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Impact of Billion-Dollar Events on Selection into the Conforming Segment

This table estimates the impact of billion-dollar events on borrowers’ credit score, loan term, and
subsequent default for conforming loans vs. jumbo loans using specification (1). Descriptive statistics
from McDash are presented in Appendix Table H.

Credit Score Term Foreclosure 30 d. del.

Below Limitit× Treatedjt=−2 2.110 −4.268 −0.004 −0.003
(1.493) (3.537) (0.009) (0.008)

Below Limitit× Treatedjt=0 −0.117 2.686 0.009 0.015***
(0.912) (2.521) (0.008) (0.006)

Below Limitit× Treatedjt=+1 −3.371* 4.680 0.036** 0.036***
(1.962) (3.190) (0.018) (0.009)

Below Limitit× Treatedjt=+2 −3.745*** 6.058** 0.057*** 0.033***
(1.180) (3.070) (0.008) (0.009)

Below Limitit× Treatedjt=+3 −3.403*** 3.136 0.049*** 0.006
(1.029) (3.193) (0.009) (0.007)

Observations 1,072,465 1,696,513 1,697,650 1,697,650
R Squared 0.176 0.111 0.246 0.158
F Statistic 27.915 21.608 56.772 32.610

60 d. del. 90 d. del. 120 d. del. Vol. Payoff

Below Limitit× Treatedjt=−2 −0.001 0.000 −0.000 −0.018
(0.009) (0.010) (0.008) (0.011)

Below Limitit× Treatedjt=0 0.012 0.010 −0.004 −0.012**
(0.008) (0.007) (0.006) (0.006)

Below Limitit× Treatedjt=+1 0.039*** 0.032*** 0.013 −0.031***
(0.014) (0.013) (0.010) (0.009)

Below Limitit× Treatedjt=+2 0.046*** 0.041*** 0.032*** −0.026***
(0.012) (0.010) (0.005) (0.008)

Below Limitit× Treatedjt=+3 0.022** 0.024*** 0.013** −0.023***
(0.010) (0.009) (0.006) (0.009)

Observations 1,697,650 1,697,650 1,697,650 1,697,650
R Squared 0.198 0.192 0.175 0.168
F Statistic 42.833 41.334 36.952 35.223

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. For “other controls,” see specification 1. They include the “Below
Limit”, “Below Limit× Treated”, 5-Digit zip code f.e., Year and Time f.e. Standard errors are 2-way
clustered at the zip code and year levels.
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Table 5: Heterogeneous Impacts of Billion-Dollar Events

In specification (1), this table estimates the differential impact of a billion-dollar disaster in zip
codes: (i) according to the historical frequency of hurricanes, the spatial distribution of such 168-
year probabilities is presented in Appendix Figure B, and (ii) according to the share of a zip code in
the SFHA, where insurance is mandated for agency-backed mortgages. An example of SFHA map
is provided in Appendix Figure A.

Dependent variable:

Approved Originated Securitized
±10% ±10% ±10%
(1) (2) (3)

Below Limitijy × Treatedjt=0 ×Historical Frequencyj −0.031 −0.174 −0.123
(0.124) (0.132) (0.152)

Below Limitijy × Treatedjt=1 ×Historical Frequencyj −0.089 −0.024 0.042
(0.054) (0.108) (0.198)

Below Limitijy × Treatedjt=2 ×Historical Frequencyj −0.163 −0.213 0.739∗∗

(0.099) (0.196) (0.270)

Below Limitijy × Treatedjt=3 ×Historical Frequencyj −0.359∗∗∗ −0.507∗∗∗ 0.816∗∗∗

(0.098) (0.118) (0.236)

Below Limitijy × Treatedjt=4 ×Historical Frequencyj −0.161 −0.363∗∗ 0.919∗∗∗

(0.173) (0.156) (0.135)

Other controls All other controls of
the main specification (1)

Observations 823,866 823,866 673,160
R2 0.068 0.071 0.162
Adjusted R2 0.060 0.063 0.153

Dependent variable:

Approvals Originations Securitizations
±10% ±10% ±10%
(1) (2) (3)

Below Limitijy × Treatedjt=0 ×% SFHAj −0.031 −0.030 −0.081
(0.020) (0.032) (0.051)

Below Limitijy × Treatedjt=1 ×% SFHAj −0.022∗∗ −0.032 −0.089
(0.009) (0.022) (0.060)

Below Limitijy × Treatedjt=2 ×% SFHAj −0.047∗ −0.055∗ −0.022
(0.023) (0.029) (0.051)

Below Limitijy × Treatedjt=3 ×% SFHAj −0.005 −0.006 −0.025
(0.022) (0.040) (0.059)

Below Limitijy × Treatedjt=4 ×% SFHAj −0.019 −0.015 0.052
(0.036) (0.043) (0.038)

Other controls All other controls of
the main specification (1)

Observations 826,799 826,799 675,526
R2 0.068 0.070 0.154
Adjusted R2 0.060 0.062 0.145

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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